IDEAS home Printed from https://ideas.repec.org/p/usi/wpaper/867.html
   My bibliography  Save this paper

Strategy-Proof Aggregation Rules in Median Semilattices with Applications to Preference Aggregation

Author

Listed:
  • Ernesto Savaglio
  • Stefano Vannucci

Abstract

Two characterizations of the whole class of strategy-proof aggregation rules on rich domains of locally unimodal preorders in finite median join-semilattices are provided. In particular, it is shown that such a class consists precisely of generalized weak sponsorship rules induced by certain families of order filters of the coalition poset. It follows that the co-majority rule and many other inclusive aggregation rules belong to that class. The co-majority rule for an odd number of agents is characterized and shown to be equivalent to a Condorcet-Kemeny rule. Applications to preference aggregation rules including Arrowian social welfare functions are also considered. The existence of strategy-proof anonymous neutral and unanimity-respecting social welfare functions which are defined on arbitrary profiles of total preorders and satisfy a suitably relaxed independence condition is shown to follow from our characterizations.

Suggested Citation

  • Ernesto Savaglio & Stefano Vannucci, 2021. "Strategy-Proof Aggregation Rules in Median Semilattices with Applications to Preference Aggregation," Department of Economics University of Siena 867, Department of Economics, University of Siena.
  • Handle: RePEc:usi:wpaper:867
    as

    Download full text from publisher

    File URL: http://repec.deps.unisi.it/quaderni/867.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Janowitz, M. F., 1984. "On the semilattice of weak orders of a set," Mathematical Social Sciences, Elsevier, vol. 8(3), pages 229-239, December.
    2. Ernesto Savaglio & Stefano Vannucci, 2019. "Strategy-proof aggregation rules and single peakedness in bounded distributive lattices," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 295-327, February.
    3. Gaertner,Wulf, 2006. "Domain Conditions in Social Choice Theory," Cambridge Books, Cambridge University Press, number 9780521028745, September.
    4. Dutta, Bhaskar & Jackson, Matthew O & Le Breton, Michel, 2001. "Strategic Candidacy and Voting Procedures," Econometrica, Econometric Society, vol. 69(4), pages 1013-1037, July.
    5. Bernard Monjardet & Vololonirina Raderanirina, 2004. "Lattices of choice functions and consensus problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(3), pages 349-382, December.
    6. Jay Sethuraman & Teo Chung Piaw & Rakesh V. Vohra, 2003. "Integer Programming and Arrovian Social Welfare Functions," Mathematics of Operations Research, INFORMS, vol. 28(2), pages 309-326, May.
    7. Pierre Barthelemy, Jean & Monjardet, Bernard, 1981. "The median procedure in cluster analysis and social choice theory," Mathematical Social Sciences, Elsevier, vol. 1(3), pages 235-267, May.
    8. Bonifacio, Agustín G. & Massó, Jordi, 2020. "On strategy-proofness and semilattice single-peakedness," Games and Economic Behavior, Elsevier, vol. 124(C), pages 219-238.
    9. Danilov, Vladimir I., 1994. "The structure of non-manipulable social choice rules on a tree," Mathematical Social Sciences, Elsevier, vol. 27(2), pages 123-131, April.
    10. Shurojit Chatterji & Jordi Massó, 2018. "On Strategy†Proofness And The Salience Of Single†Peakedness," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 59(1), pages 163-189, February.
    11. Stefano Vannucci, 2019. "Majority judgment and strategy-proofness: a characterization," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 863-886, September.
    12. Shin Sato, 2015. "Bounded response and the equivalence of nonmanipulability and independence of irrelevant alternatives," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 133-149, January.
    13. Monjardet, B., 1990. "Arrowian characterizations of latticial federation consensus functions," Mathematical Social Sciences, Elsevier, vol. 20(1), pages 51-71, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefano Vannucci, 2022. "Agenda manipulation-proofness, stalemates, and redundant elicitation in preference aggregation. Exposing the bright side of Arrow's theorem," Papers 2210.03200, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ernesto Savaglio & Stefano Vannucci, 2022. "Strategy-proof aggregation rules in median semilattices with applications to preference aggregation," Papers 2208.12732, arXiv.org.
    2. Stefano Vannucci, 2022. "Agenda manipulation-proofness, stalemates, and redundant elicitation in preference aggregation. Exposing the bright side of Arrow's theorem," Papers 2210.03200, arXiv.org.
    3. Stefano Vannucci, 2019. "Majority judgment and strategy-proofness: a characterization," International Journal of Game Theory, Springer;Game Theory Society, vol. 48(3), pages 863-886, September.
    4. Olivier Hudry & Bruno Leclerc & Bernard Monjardet & Jean-Pierre Barthélemy, 2004. "Médianes métriques et latticielles," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-03322636, HAL.
    5. Olivier Hudry & Bernard Monjardet, 2010. "Consensus theories: An oriented survey," Documents de travail du Centre d'Economie de la Sorbonne 10057, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    6. Stefano Vannucci, 2016. "Majority Judgment and Strategy-Proofness," Department of Economics University of Siena 730, Department of Economics, University of Siena.
    7. Bonifacio, Agustín G. & Massó, Jordi & Neme, Pablo, 2023. "Preference restrictions for simple and strategy-proof rules: Local and weakly single-peaked domains," Journal of Mathematical Economics, Elsevier, vol. 106(C).
    8. Bernard Monjardet & Jean-Pierre Barthélemy & Olivier Hudry & Bruno Leclerc, 2009. "Metric and latticial medians," Post-Print halshs-00408174, HAL.
    9. Salvador Barberà & Lars Ehlers, 2011. "Free triples, large indifference classes and the majority rule," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 37(4), pages 559-574, October.
    10. Salvador Barberà & Dolors Berga & Bernardo Moreno, 2020. "Arrow on domain conditions: a fruitful road to travel," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 54(2), pages 237-258, March.
    11. Chatterji, Shurojit & Zeng, Huaxia, 2023. "A taxonomy of non-dictatorial unidimensional domains," Games and Economic Behavior, Elsevier, vol. 137(C), pages 228-269.
    12. Chatterji, Shurojit & Roy, Souvik & Sadhukhan, Soumyarup & Sen, Arunava & Zeng, Huaxia, 2022. "Probabilistic fixed ballot rules and hybrid domains," Journal of Mathematical Economics, Elsevier, vol. 100(C).
    13. Le Breton, Michel & Weymark, John A., 2002. "Arrovian Social Choice Theory on Economic Domains," IDEI Working Papers 143, Institut d'Économie Industrielle (IDEI), Toulouse, revised Sep 2003.
    14. Bernard Monjardet & Vololonirina Raderanirina, 2004. "Lattices of choice functions and consensus problems," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 23(3), pages 349-382, December.
    15. Bonifacio, Agustín G. & Massó, Jordi, 2020. "On strategy-proofness and semilattice single-peakedness," Games and Economic Behavior, Elsevier, vol. 124(C), pages 219-238.
    16. Puppe, Clemens, 2018. "The single-peaked domain revisited: A simple global characterization," Journal of Economic Theory, Elsevier, vol. 176(C), pages 55-80.
    17. Ernesto Savaglio & Stefano Vannucci, 2012. "Strategy-proofness and unimodality in bounded distributive lattices," Department of Economics University of Siena 642, Department of Economics, University of Siena.
    18. Ernesto Savaglio & Stefano Vannucci, 2014. "Strategy-proofness and single-peackedness in bounded distributive lattices," Papers 1406.5120, arXiv.org.
    19. Hans Peters & Souvik Roy & Soumyarup Sadhukhan, 2021. "Unanimous and Strategy-Proof Probabilistic Rules for Single-Peaked Preference Profiles on Graphs," Mathematics of Operations Research, INFORMS, vol. 46(2), pages 811-833, May.
    20. Ernesto Savaglio & Stefano Vannucci, 2019. "Strategy-proof aggregation rules and single peakedness in bounded distributive lattices," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 52(2), pages 295-327, February.

    More about this item

    Keywords

    Strategy-proofness; single peakedness; median join-semilattice; social welfare function;
    All these keywords.

    JEL classification:

    • D71 - Microeconomics - - Analysis of Collective Decision-Making - - - Social Choice; Clubs; Committees; Associations

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:usi:wpaper:867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Fabrizio Becatti (email available below). General contact details of provider: https://edirc.repec.org/data/desieit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.