IDEAS home Printed from https://ideas.repec.org/p/dui/wpaper/2407.html
   My bibliography  Save this paper

Deriving multivariate probabilistic solar generation forecasts based on hourly imbalanced data

Author

Listed:
  • Yannik Pflugfelder
  • Aiko Schinke-Nendza
  • Jonathan Dumas
  • Christoph Weber

    (Chair for Management Sciences and Energy Economics, University of Duisburg-Essen)

Abstract

Accurate forecasting of solar PV generation is critical for integrating renewable energy into power systems. This paper presents a multivariate probabilistic forecasting model that addresses the challenges posed by imbalanced data resulting from day and night-time periods in solar photovoltaic (PV) generation. The proposed approach offers a robust and accurate method for predicting solar PV output by incorporating forecast updates and modeling the temporal interdependencies. The methodology is applied to a case study in France, demonstrating effectiveness across different spatial granularities and forecast horizons. The model uses advanced data handling methods combined with copula models, resulting in improved Energy Scores and Variogram-based Scores. These improvements underscore the importance of addressing imbalanced data and utilizing multivariate models with repeated updates to enhance solar forecasting accuracy. This work contributes to advancing forecasting techniques essential for integrating renewable energy into power grids, supporting the global transition to a sustainable energy future.

Suggested Citation

  • Yannik Pflugfelder & Aiko Schinke-Nendza & Jonathan Dumas & Christoph Weber, 2024. "Deriving multivariate probabilistic solar generation forecasts based on hourly imbalanced data," EWL Working Papers 2407, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised Nov 2024.
  • Handle: RePEc:dui:wpaper:2407
    as

    Download full text from publisher

    File URL: https://www.ewl.wiwi.uni-due.de/fileadmin/fileupload/BWL-ENERGIE/Arbeitspapiere/RePEc/pdf/wp2407.pdf
    File Function: First Version, 2024
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    2. Zalzar, Shaghayegh & Bompard, Ettore & Purvins, Arturs & Masera, Marcelo, 2020. "The impacts of an integrated European adjustment market for electricity under high share of renewables," Energy Policy, Elsevier, vol. 136(C).
    3. Gürtler, Marc & Paulsen, Thomas, 2018. "The effect of wind and solar power forecasts on day-ahead and intraday electricity prices in Germany," Energy Economics, Elsevier, vol. 75(C), pages 150-162.
    4. Badi Baltagi & Seuck Song, 2006. "Unbalanced panel data: A survey," Statistical Papers, Springer, vol. 47(4), pages 493-523, October.
    5. Pinson, P. & Girard, R., 2012. "Evaluating the quality of scenarios of short-term wind power generation," Applied Energy, Elsevier, vol. 96(C), pages 12-20.
    6. Tao Hong & Pierre Pinson & Yi Wang & Rafal Weron & Dazhi Yang & Hamidreza Zareipour, 2020. "Energy forecasting: A review and outlook," WORking papers in Management Science (WORMS) WORMS/20/08, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    7. Schinke-Nendza, A. & von Loeper, F. & Osinski, P. & Schaumann, P. & Schmidt, V. & Weber, C., 2021. "Probabilistic forecasting of photovoltaic power supply — A hybrid approach using D-vine copulas to model spatial dependencies," Applied Energy, Elsevier, vol. 304(C).
    8. Badi H. Baltagi & Long Liu, 2020. "Forecasting with unbalanced panel data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(5), pages 709-724, August.
    9. Kolkmann, Sven & Ostmeier, Lars & Weber, Christoph, 2024. "Modeling multivariate intraday forecast update processes for wind power," Energy Economics, Elsevier, vol. 139(C).
    10. Visser, L.R. & AlSkaif, T.A. & Khurram, A. & Kleissl, J. & van Sark, W.G.H.J.M., 2024. "Probabilistic solar power forecasting: An economic and technical evaluation of an optimal market bidding strategy," Applied Energy, Elsevier, vol. 370(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Macedo, Daniela Pereira & Marques, António Cardoso & Damette, Olivier, 2020. "The impact of the integration of renewable energy sources in the electricity price formation: is the Merit-Order Effect occurring in Portugal?," Utilities Policy, Elsevier, vol. 66(C).
    2. Grothe, Oliver & Kächele, Fabian & Krüger, Fabian, 2023. "From point forecasts to multivariate probabilistic forecasts: The Schaake shuffle for day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 120(C).
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Narajewski, Michał & Ziel, Florian, 2020. "Ensemble forecasting for intraday electricity prices: Simulating trajectories," Applied Energy, Elsevier, vol. 279(C).
    5. Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    7. Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    8. Cramer, Eike & Witthaut, Dirk & Mitsos, Alexander & Dahmen, Manuel, 2023. "Multivariate probabilistic forecasting of intraday electricity prices using normalizing flows," Applied Energy, Elsevier, vol. 346(C).
    9. Abduraimova, Kumushoy, 2022. "Contagion and tail risk in complex financial networks," Journal of Banking & Finance, Elsevier, vol. 143(C).
    10. Beatriz Muriel & Carlos Gustavo Machicado, 2012. "Employment and Labor Regulation: Evidence from Manufacturing Firms in Bolivia, 1988-2007," Development Research Working Paper Series 07/2012, Institute for Advanced Development Studies.
    11. Tobias Fissler & Yannick Hoga, 2024. "How to Compare Copula Forecasts?," Papers 2410.04165, arXiv.org.
    12. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    13. Avanzi, Benjamin & Taylor, Greg & Wong, Bernard & Yang, Xinda, 2021. "On the modelling of multivariate counts with Cox processes and dependent shot noise intensities," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 9-24.
    14. Pfeifer Dietmar & Mändle Andreas & Ragulina Olena, 2017. "New copulas based on general partitions-of-unity and their applications to risk management (part II)," Dependence Modeling, De Gruyter, vol. 5(1), pages 246-255, October.
    15. Diba Daraei & Kristina Sendova, 2024. "Determining Safe Withdrawal Rates for Post-Retirement via a Ruin-Theory Approach," Risks, MDPI, vol. 12(4), pages 1-21, April.
    16. Kerstens, Kristiaan & Van de Woestyne, Ignace, 2014. "Comparing Malmquist and Hicks–Moorsteen productivity indices: Exploring the impact of unbalanced vs. balanced panel data," European Journal of Operational Research, Elsevier, vol. 233(3), pages 749-758.
    17. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    18. Billé, Anna Gloria & Gianfreda, Angelica & Del Grosso, Filippo & Ravazzolo, Francesco, 2023. "Forecasting electricity prices with expert, linear, and nonlinear models," International Journal of Forecasting, Elsevier, vol. 39(2), pages 570-586.
    19. Nevrla, Matěj, 2020. "Systemic risk in European financial and energy sectors: Dynamic factor copula approach," Economic Systems, Elsevier, vol. 44(4).
    20. Hendrik Thiel & Stephan L. Thomsen, 2015. "Individual Poverty Paths and the Stability of Control-Perception," SOEPpapers on Multidisciplinary Panel Data Research 794, DIW Berlin, The German Socio-Economic Panel (SOEP).

    More about this item

    Keywords

    Multivariate probabilistic forecasts; Forecast updates; Solar generation; Copula;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dui:wpaper:2407. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andreas Fritz (email available below). General contact details of provider: https://edirc.repec.org/data/fwessde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.