IDEAS home Printed from https://ideas.repec.org/p/dls/wpaper/0125.html
   My bibliography  Save this paper

The distributive Effects of Education: An Unconditional Quantile Regression Approach

Author

Listed:
  • Javier Alejo

    (Universidad Nacional de La Plata and CONICET)

  • María Florencia Gabrielli

    (Universidad Nacional de Cuyo and CONICET)

  • Walter Sosa Escudero

    (Universidad de San Andres and CONICET)

Abstract

En este trabajo utilizamos los más recientes métodos de regresión no condicionada por cuantiles (RNCQ) para estudiar los efectos distributivos de la educación en Argentina. Los métodos estándar se centran, por lo general, en efectos promedio o estudian los efectos distributivos ya sea haciendo uso de suposiciones estrictas al modelar y/o a través de descomposiciones contrafácticas que requieren varias observaciones temporales. La aplicación empírica en este trabajo muestra la flexibilidad y utilidad de los métodos de RNCQ. Nuestra aplicación para el caso de Argentina sugiere que la educación ha contribuido positivamente al aumento de la desigualdad, debido principalmente a efectos fuertemente heterogéneos de la educación sobre los ingresos.

Suggested Citation

  • Javier Alejo & María Florencia Gabrielli & Walter Sosa Escudero, 2011. "The distributive Effects of Education: An Unconditional Quantile Regression Approach," CEDLAS, Working Papers 0125, CEDLAS, Universidad Nacional de La Plata.
  • Handle: RePEc:dls:wpaper:0125
    as

    Download full text from publisher

    File URL: http://www.cedlas.econo.unlp.edu.ar/wp/wp-content/uploads/doc_cedlas125.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Martins, Pedro S. & Pereira, Pedro T., 2004. "Does education reduce wage inequality? Quantile regression evidence from 16 countries," Labour Economics, Elsevier, vol. 11(3), pages 355-371, June.
    2. Javier Alejo, 2006. "Desigualdad Salarial en el Gran Buenos Aires: Una Aplicación de Regresión por Cuantiles en Microdescomposiciones," CEDLAS, Working Papers 0036, CEDLAS, Universidad Nacional de La Plata.
    3. José Mata & José A. F. Machado, 2005. "Counterfactual decomposition of changes in wage distributions using quantile regression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(4), pages 445-465.
    4. Melly, Blaise, 2005. "Decomposition of differences in distribution using quantile regression," Labour Economics, Elsevier, vol. 12(4), pages 577-590, August.
    5. Buchinsky, Moshe, 1994. "Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression," Econometrica, Econometric Society, vol. 62(2), pages 405-458, March.
    6. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    7. Card, David, 2001. "Estimating the Return to Schooling: Progress on Some Persistent Econometric Problems," Econometrica, Econometric Society, vol. 69(5), pages 1127-1160, September.
    8. repec:ran:wpaper:824 is not listed on IDEAS
    9. Walter Sosa Escudero & Sergio Petralia, 2010. "“I Can Hear the Grass Grow”: The Anatomy of Distributive Changes in Argentina," CEDLAS, Working Papers 0106, CEDLAS, Universidad Nacional de La Plata.
    10. Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corrado Andini, 2022. "Tertiary education for all and wage inequality: policy insights from quantile regression," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 50(6), pages 1281-1296, November.
    2. Darío Judzik & Lucía Trujillo & Soledad Villafañe, 2017. "A tale of two decades: Income inequality and public policy in Argentina (1996-2014)," Revista Cuadernos de Economia, Universidad Nacional de Colombia, FCE, CID, vol. 36(72), October.
    3. Cobb-Clark, Deborah A. & Kassenboehmer, Sonja C. & Sinning, Mathias G., 2016. "Locus of control and savings," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 113-130.
    4. repec:zbw:rwirep:0455 is not listed on IDEAS
    5. Dai Binh Tran & Sasiwimon Warunsiri Paweenawat, 2023. "The returns to education and wage penalty from overeducation: New evidence from Vietnam," Bulletin of Economic Research, Wiley Blackwell, vol. 75(4), pages 1267-1290, October.
    6. Schreurs, Eloi & Peeters, Ludo & Van Passel, Steven, 2014. "Analyzing the impacts of soil contamination and urban development pressure on farmland values: Unconditional quantile regression estimation," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182741, European Association of Agricultural Economists.
    7. Ebru Çaglayan Akay & Fulden Komuryakan, 2021. "What Do Conditional and Unconditional Quantile Regression Models Tell Us Something Different About Wage Inequality in Turkey?," Journal of Economy Culture and Society, Istanbul University, Faculty of Economics, vol. 64(64), pages 257-277, December.
    8. Deborah A. Cobb-Clark & Sonja C. Kassenboehmer & Mathias G. Sinning, 2013. "Locus of Control and Savings," Ruhr Economic Papers 0455, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    9. Tiiu Paas & Maryna Tverdostup, 2016. "Assessment of labour market returns in the case of gender unique human capital," ERSA conference papers ersa16p157, European Regional Science Association.
    10. Stefan Schneck, 2020. "Self-employment as a source of income inequality," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 10(1), pages 45-64, March.
    11. Schneck, Stefan, 2018. "The effect of self-employment on income inequality," Working Papers 05/18, Institut für Mittelstandsforschung (IfM) Bonn.
    12. Petra Sauer & Philippe Van Kerm & Daniele Checchi, 2023. "Higher Education Expansion & Labour Income Inequality in High-income Countries: A Gender-specific Perspective," LIS Working papers 837, LIS Cross-National Data Center in Luxembourg.
    13. Roxana Maurizio & Luis Beccaria & Ana Monsalvo, 2022. "Labour Formalization and Inequality: The Distributive Impact of Labour Formalization in Latin America since 2000," Development and Change, International Institute of Social Studies, vol. 53(1), pages 117-165, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javier Alejo & Leonardo Gasparini & Gabriel Montes-Rojas & Walter Sosa-Escudero, 2024. "A decomposition method to evaluate the ‘paradox of progress’, with evidence for Argentina," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 22(2), pages 453-472, June.
    2. Balestra, Simone & Backes-Gellner, Uschi, 2017. "Heterogeneous returns to education over the wage distribution: Who profits the most?," Labour Economics, Elsevier, vol. 44(C), pages 89-105.
    3. Paolo Naticchioni & Andrea Ricci & Emiliano Rustichelli, 2007. "Wage Structure, Inequality And Skill-Biased Change: Is Italy An Outlier?," Quaderni del Dipartimento di Economia, Finanza e Statistica 38/2007, Università di Perugia, Dipartimento Economia.
    4. Sergio Firpo & Nicole M. Fortin & Thomas Lemieux, 2009. "Unconditional Quantile Regressions," Econometrica, Econometric Society, vol. 77(3), pages 953-973, May.
    5. Yee, Karol Mark Ramirez, 2023. "Raising the floor while lowering the ceiling: Reduced inequities in education returns in the Philippines," International Journal of Educational Development, Elsevier, vol. 101(C).
    6. Valentine Fays & Benoît Mahy & François Rycx, 2023. "Wage differences according to workers' origin: The role of working more upstream in GVCs," LABOUR, CEIS, vol. 37(2), pages 319-342, June.
    7. Victor Chernozhukov & Iván Fernández‐Val & Blaise Melly, 2013. "Inference on Counterfactual Distributions," Econometrica, Econometric Society, vol. 81(6), pages 2205-2268, November.
    8. Michel Lubrano & Abdoul Aziz Junior Ndoye, 2014. "Bayesian Unconditional Quantile Regression: An Analysis of Recent Expansions in Wage Structure and Earnings Inequality in the US 1992–2009," Scottish Journal of Political Economy, Scottish Economic Society, vol. 61(2), pages 129-153, May.
    9. Wang, Wen & Lien, Donald, 2018. "Union membership, union coverage and wage dispersion of rural migrants: Evidence from Suzhou industrial sector," China Economic Review, Elsevier, vol. 49(C), pages 96-113.
    10. Chi, Wei & Li, Bo, 2007. "Glass Ceiling or Sticky Floor? Examining the Gender Pay Gap across the Wage Distribution in Urban China, 1987-2004," MPRA Paper 3544, University Library of Munich, Germany.
    11. Collischon Matthias, 2019. "Is There a Glass Ceiling over Germany?," German Economic Review, De Gruyter, vol. 20(4), pages 329-359, December.
    12. Sonja C. Kassenboehmer & Mathias G. Sinning, 2014. "Distributional Changes in the Gender Wage Gap," ILR Review, Cornell University, ILR School, vol. 67(2), pages 335-361, April.
    13. Domenico Depalo & Raffaela Giordano & Evangelia Papapetrou, 2015. "Public–private wage differentials in euro-area countries: evidence from quantile decomposition analysis," Empirical Economics, Springer, vol. 49(3), pages 985-1015, November.
    14. Nicola Gagliardi & Benoît Mahy & François Rycx, 2021. "Upstreamness, Wages and Gender: Equal Benefits for All?," British Journal of Industrial Relations, London School of Economics, vol. 59(1), pages 52-83, March.
    15. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    16. Sarah Voitchovsky & Bertrand Maitre & Brian Nolan, 2012. "Wage Inequality in Ireland’s “Celtic Tiger” Boom," The Economic and Social Review, Economic and Social Studies, vol. 43(1), pages 99-133.
    17. Bedaso, Fenet Jima, 2024. "Occupational Segregation and the Gender Wage Gap: Evidence from Ethiopia," GLO Discussion Paper Series 1393, Global Labor Organization (GLO).
    18. Kaya Ezgi, 2021. "Gender wage gap across the distribution: What is the role of within- and between-firm effects?," IZA Journal of Development and Migration, Sciendo & Forschungsinstitut zur Zukunft der Arbeit GmbH (IZA), vol. 12(1), pages 1-49, January.
    19. Zhang, Lei & Yi, Yimin, 2018. "What contributes to the rising house prices in Beijing? A decomposition approach," Journal of Housing Economics, Elsevier, vol. 41(C), pages 72-84.
    20. Azam, Mehtabul, 2012. "Changes in Wage Structure in Urban India, 1983–2004: A Quantile Regression Decomposition," World Development, Elsevier, vol. 40(6), pages 1135-1150.

    More about this item

    Keywords

    unconditional quantile regression; income inequality; education; Argentina;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • I24 - Health, Education, and Welfare - - Education - - - Education and Inequality
    • I31 - Health, Education, and Welfare - - Welfare, Well-Being, and Poverty - - - General Welfare, Well-Being
    • D3 - Microeconomics - - Distribution

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dls:wpaper:0125. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Pacheco (email available below). General contact details of provider: https://edirc.repec.org/data/funlpar.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.