IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2115r.html
   My bibliography  Save this paper

Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness

Author

Listed:

Abstract

We consider estimation and inference on average treatment effects under unconfoundedness conditional on the realizations of the treatment variable and covariates. Given nonparametric smoothness and/or shape restrictions on the conditional mean of the outcome variable, we derive estimators and confidence intervals (CIs) that are optimal infinite samples when the regression errors are normal with known variance. In contrast to conventional CIs, our CIs use a larger critical value that explicitly takes into account the potential bias of the estimator. When the error distribution is unknown, feasible versions of our CIs are valid asymptotically, even when square root n-inference is not possible due to lack of overlap, or low smoothness of the conditional mean. We also derive the minimum smoothness conditions on the conditional mean that are necessary for square root n-inference. When the conditional mean is restricted to be Lipschitz with a large enough bound on the Lipschitz constant, the optimal estimator reduces to a matching estimator with the number of matches set to one. We illustrate our methods in an application to the National Supported Work Demonstration.

Suggested Citation

  • Timothy B. Armstrong & Michal Koles'r, 2017. "Finite-Sample Optimal Estimation and Inference on Average Treatment Effects Under Unconfoundedness," Cowles Foundation Discussion Papers 2115R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2018.
  • Handle: RePEc:cwl:cwldpp:2115r
    Note: Includes Supplimental Material
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d21/d2115-ra.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Richard K. Crump & V. Joseph Hotz & Guido W. Imbens & Oscar A. Mitnik, 2009. "Dealing with limited overlap in estimation of average treatment effects," Biometrika, Biometrika Trust, vol. 96(1), pages 187-199.
    2. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, vol. 76(4), pages 604-620, September.
    3. Christoph Rothe, 2017. "Robust Confidence Intervals for Average Treatment Effects Under Limited Overlap," Econometrica, Econometric Society, vol. 85, pages 645-660, March.
    4. Sebastian Galiani & Paul Gertler & Ernesto Schargrodsky, 2005. "Water for Life: The Impact of the Privatization of Water Services on Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 83-120, February.
    5. Victor Chernozhukov & Sokbae Lee & Adam M. Rosen, 2013. "Intersection Bounds: Estimation and Inference," Econometrica, Econometric Society, vol. 81(2), pages 667-737, March.
    6. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    7. James J. Heckman & Hidehiko Ichimura & Petra E. Todd, 1997. "Matching As An Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 605-654.
    8. repec:adr:anecst:y:2008:i:91-92:p:09 is not listed on IDEAS
    9. Drees, Holger, 1999. "On fixed-length confidence intervals for a bounded normal mean," Statistics & Probability Letters, Elsevier, vol. 44(4), pages 399-404, October.
    10. Shakeeb Khan & Denis Nekipelov, 2013. "On Uniform Inference in Nonlinear Models with Endogeneity," Working Papers 13-16, Duke University, Department of Economics.
    11. Matias Busso & John DiNardo & Justin McCrary, 2014. "New Evidence on the Finite Sample Properties of Propensity Score Reweighting and Matching Estimators," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 885-897, December.
    12. Alberto Abadie & Guido W. Imbens, 2008. "Estimation of the Conditional Variance in Paired Experiments," Annals of Economics and Statistics, GENES, issue 91-92, pages 175-187.
    13. Alberto Abadie & Guido W. Imbens, 2011. "Bias-Corrected Matching Estimators for Average Treatment Effects," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(1), pages 1-11, January.
    14. Keisuke Hirano & Guido W. Imbens & Geert Ridder, 2003. "Efficient Estimation of Average Treatment Effects Using the Estimated Propensity Score," Econometrica, Econometric Society, vol. 71(4), pages 1161-1189, July.
    15. Petra E. Todd & Jeffrey A. Smith, 2001. "Reconciling Conflicting Evidence on the Performance of Propensity-Score Matching Methods," American Economic Review, American Economic Association, vol. 91(2), pages 112-118, May.
    16. Shakeeb Khan & Elie Tamer, 2010. "Irregular Identification, Support Conditions, and Inverse Weight Estimation," Econometrica, Econometric Society, vol. 78(6), pages 2021-2042, November.
    17. Guido Imbens & Karthik Kalyanaraman, 2012. "Optimal Bandwidth Choice for the Regression Discontinuity Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 79(3), pages 933-959.
    18. Martha J. Bailey & Andrew Goodman-Bacon, 2015. "The War on Poverty's Experiment in Public Medicine: Community Health Centers and the Mortality of Older Americans," American Economic Review, American Economic Association, vol. 105(3), pages 1067-1104, March.
    19. Alberto Abadie & Guido W. Imbens, 2012. "A Martingale Representation for Matching Estimators," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(498), pages 833-843, June.
    20. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    21. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    22. James J. Heckman & Hidehiko Ichimura & Petra Todd, 1998. "Matching As An Econometric Evaluation Estimator," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 65(2), pages 261-294.
    23. Zhong Zhao, 2004. "Using Matching to Estimate Treatment Effects: Data Requirements, Matching Metrics, and Monte Carlo Evidence," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 91-107, February.
    24. Lee, David S., 2008. "Randomized experiments from non-random selection in U.S. House elections," Journal of Econometrics, Elsevier, vol. 142(2), pages 675-697, February.
    25. Alberto Abadie & Guido W. Imbens, 2006. "Large Sample Properties of Matching Estimators for Average Treatment Effects," Econometrica, Econometric Society, vol. 74(1), pages 235-267, January.
    26. Alberto Abadie & Guido W. Imbens & Fanyin Zheng, 2014. "Inference for Misspecified Models With Fixed Regressors," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1601-1614, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhexiao Lin & Peng Ding & Fang Han, 2023. "Estimation Based on Nearest Neighbor Matching: From Density Ratio to Average Treatment Effect," Econometrica, Econometric Society, vol. 91(6), pages 2187-2217, November.
    2. Cl'ement de Chaisemartin, 2021. "Trading-off Bias and Variance in Stratified Experiments and in Matching Studies, Under a Boundedness Condition on the Magnitude of the Treatment Effect," Papers 2105.08766, arXiv.org, revised Jan 2024.
    3. Laurent Davezies & Xavier D'Haultf{oe}uille & Louise Laage, 2021. "Identification and Estimation of Average Causal Effects in Fixed Effects Logit Models," Papers 2105.00879, arXiv.org, revised Dec 2024.
    4. Zichen Deng & Maarten Lindeboom, 2021. "Early-life Famine Exposure, Hunger Recall and Later-life Health," Tinbergen Institute Discussion Papers 21-054/V, Tinbergen Institute.
    5. Zichen Deng & Maarten Lindeboom, 2021. "Early-life Famine Exposure, Hunger Recall and Later-life Health," Papers 2021-04, Centre for Health Economics, Monash University.
    6. Zichen Deng & Maarten Lindeboom, 2022. "Early‐life famine exposure, hunger recall, and later‐life health," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(4), pages 771-787, June.
    7. Timothy B. Armstrong & Michal Koles'ar & Soonwoo Kwon, 2020. "Bias-Aware Inference in Regularized Regression Models," Papers 2012.14823, arXiv.org, revised Aug 2023.
    8. Deng, Zichen & Lindeboom, Maarten, 2021. "Early-Life Famine Exposure, Hunger Recall and Later-Life Health," IZA Discussion Papers 14487, Institute of Labor Economics (IZA).
    9. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    10. Timothy B. Armstrong & Michal Kolesár, 2021. "Sensitivity analysis using approximate moment condition models," Quantitative Economics, Econometric Society, vol. 12(1), pages 77-108, January.
    11. Huiming Zhang & Haoyu Wei & Guang Cheng, 2023. "Tight Non-asymptotic Inference via Sub-Gaussian Intrinsic Moment Norm," Papers 2303.07287, arXiv.org, revised Jan 2024.
    12. Dmitry Arkhangelsky & David Hirshberg, 2023. "Large-Sample Properties of the Synthetic Control Method under Selection on Unobservables," Papers 2311.13575, arXiv.org, revised Dec 2023.
    13. Susan Athey & Stefan Wager, 2021. "Policy Learning With Observational Data," Econometrica, Econometric Society, vol. 89(1), pages 133-161, January.
    14. Max Cytrynbaum, 2021. "Optimal Stratification of Survey Experiments," Papers 2111.08157, arXiv.org, revised Aug 2023.
    15. Xie, Haitian, 2024. "Nonlinear and nonseparable structural functions in regression discontinuity designs with a continuous treatment," Journal of Econometrics, Elsevier, vol. 242(1).
    16. D’Amour, Alexander & Ding, Peng & Feller, Avi & Lei, Lihua & Sekhon, Jasjeet, 2021. "Overlap in observational studies with high-dimensional covariates," Journal of Econometrics, Elsevier, vol. 221(2), pages 644-654.
    17. Kohei Yata, 2021. "Optimal Decision Rules Under Partial Identification," Papers 2111.04926, arXiv.org, revised Aug 2023.
    18. Sokbae Lee & Martin Weidner, 2021. "Bounding Treatment Effects by Pooling Limited Information across Observations," Papers 2111.05243, arXiv.org, revised Dec 2023.
    19. Laurent Davezies & Xavier D'Haultfoeuille & Louise Laage, 2021. "Identification and Estimation of Average Marginal Effects in Fixed Effects Logit Models," Papers 2105.00879, arXiv.org, revised Oct 2022.
    20. Pengzhou Wu & Kenji Fukumizu, 2021. "$\beta$-Intact-VAE: Identifying and Estimating Causal Effects under Limited Overlap," Papers 2110.05225, arXiv.org.
    21. Ke Sun & Linglong Kong & Hongtu Zhu & Chengchun Shi, 2024. "Optimal Treatment Allocation Strategies for A/B Testing in Partially Observable Time Series Experiments," Papers 2408.05342, arXiv.org, revised Oct 2024.
    22. Ganesh Karapakula, 2023. "Stable Probability Weighting: Large-Sample and Finite-Sample Estimation and Inference Methods for Heterogeneous Causal Effects of Multivalued Treatments Under Limited Overlap," Papers 2301.05703, arXiv.org, revised Jan 2023.
    23. Christoph Breunig & Ruixuan Liu & Zhengfei Yu, 2022. "Double Robust Bayesian Inference on Average Treatment Effects," Papers 2211.16298, arXiv.org, revised Oct 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    2. Advani, Arun & Sloczynski, Tymon, 2013. "Mostly Harmless Simulations? On the Internal Validity of Empirical Monte Carlo Studies," IZA Discussion Papers 7874, Institute of Labor Economics (IZA).
    3. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    4. Ferman, Bruno, 2021. "Matching estimators with few treated and many control observations," Journal of Econometrics, Elsevier, vol. 225(2), pages 295-307.
    5. Carlos A. Flores & Oscar A. Mitnik, 2009. "Evaluating Nonexperimental Estimators for Multiple Treatments: Evidence from Experimental Data," Working Papers 2010-10, University of Miami, Department of Economics.
    6. Gustavo Canavire-Bacarreza & Luis Castro Peñarrieta & Darwin Ugarte Ontiveros, 2021. "Outliers in Semi-Parametric Estimation of Treatment Effects," Econometrics, MDPI, vol. 9(2), pages 1-32, April.
    7. Steven Lehrer & Gregory Kordas, 2013. "Matching using semiparametric propensity scores," Empirical Economics, Springer, vol. 44(1), pages 13-45, February.
    8. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    9. Toru Kitagawa & Chris Muris, 2013. "Covariate selection and model averaging in semiparametric estimation of treatment effects," CeMMAP working papers 61/13, Institute for Fiscal Studies.
    10. Frölich, Markus & Huber, Martin & Wiesenfarth, Manuel, 2017. "The finite sample performance of semi- and non-parametric estimators for treatment effects and policy evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 115(C), pages 91-102.
    11. Michael Lechner & Anthony Strittmatter, 2019. "Practical procedures to deal with common support problems in matching estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(2), pages 193-207, February.
    12. Ferraro, Paul J. & Miranda, Juan José, 2014. "The performance of non-experimental designs in the evaluation of environmental programs: A design-replication study using a large-scale randomized experiment as a benchmark," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 344-365.
    13. Hugo Bodory & Lorenzo Camponovo & Martin Huber & Michael Lechner, 2020. "The Finite Sample Performance of Inference Methods for Propensity Score Matching and Weighting Estimators," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(1), pages 183-200, January.
    14. Taisuke Otsu & Mengshan Xu, 2022. "Isotonic propensity score matching," STICERD - Econometrics Paper Series 623, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
    15. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    16. Sant’Anna, Pedro H.C. & Song, Xiaojun, 2019. "Specification tests for the propensity score," Journal of Econometrics, Elsevier, vol. 210(2), pages 379-404.
    17. Mengshan Xu & Taisuke Otsu, 2022. "Isotonic propensity score matching," Papers 2207.08868, arXiv.org, revised Aug 2024.
    18. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2010. "How to Control for Many Covariates? Reliable Estimators Based on the Propensity Score," IZA Discussion Papers 5268, Institute of Labor Economics (IZA).
    19. Heiler, Phillip & Kazak, Ekaterina, 2021. "Valid inference for treatment effect parameters under irregular identification and many extreme propensity scores," Journal of Econometrics, Elsevier, vol. 222(2), pages 1083-1108.
    20. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.

    More about this item

    Keywords

    Semiparametric estimation; Relative efficiency; Matching estimators; Treatment effects;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2115r. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.