IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/2113.html
   My bibliography  Save this paper

Hybrid Stochastic Local Unit Roots

Author

Abstract

Two approaches have dominated formulations designed to capture small departures from unit root autoregressions. The first involves deterministic departures that include local-to-unity (LUR) and mildly (or moderately) integrated (MI) specifications where departures shrink to zero as the sample size tends to infinity. The second approach allows for stochastic departures from unity, leading to stochastic unit root (STUR) specifications. This paper introduces a hybrid local stochastic unit root (LSTUR) specification that has both LUR and STUR components and allows for endogeneity in the time varying coefficient that introduces structural elements to the autoregression. This hybrid model generates trajectories that, upon normalization, have non-linear diffusion limit processes that link closely to models that have been studied in mathematical finance, particularly with respect to option pricing. It is shown that some LSTUR parameterizations have a mean and variance which are the same as a random walk process but with a kurtosis exceeding 3, a feature which is consistent with much financial data. We develop limit theory and asymptotic expansions for the process and document how inference in LUR and STUR autoregressions is affected asymptotically by ignoring one or the other component in the more general hybrid generating mechanism. In particular, we show how confidence belts constructed from the LUR model are affected by the presence of a STUR component in the generating mechanism. The import of these findings for empirical research are explored in an application to the spreads on US investment grade corporate debt.

Suggested Citation

  • Offer Lieberman & Peter C.B. Phillips, 2017. "Hybrid Stochastic Local Unit Roots," Cowles Foundation Discussion Papers 2113, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:2113
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d21/d2113.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Bruce E. Hansen, 1999. "The Grid Bootstrap And The Autoregressive Model," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 594-607, November.
    2. Leybourne, S J & McCabe, B P M & Tremayne, A R, 1996. "Can Economic Time Series Be Differenced to Stationarity?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 435-446, October.
    3. Phillips, Peter C B, 1977. "Approximations to Some Finite Sample Distributions Associated with a First-Order Stochastic Difference Equation," Econometrica, Econometric Society, vol. 45(2), pages 463-485, March.
    4. Gawon Yoon, 2006. "A Note on Some Properties of STUR Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(2), pages 253-260, April.
    5. Liudas Giraitis & Peter C. B. Phillips, 2006. "Uniform Limit Theory for Stationary Autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(1), pages 51-60, January.
    6. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    7. Lieberman, Offer & Phillips, Peter C.B., 2017. "A multivariate stochastic unit root model with an application to derivative pricing," Journal of Econometrics, Elsevier, vol. 196(1), pages 99-110.
    8. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    9. Hans Föllmer & Martin Schweizer, 1993. "A Microeconomic Approach to Diffusion Models For Stock Prices," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 1-23, January.
    10. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    11. Werner Ploberger & Peter C. B. Phillips, 2003. "Empirical Limits for Time Series Econometric Models," Econometrica, Econometric Society, vol. 71(2), pages 627-673, March.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    14. Kwan, Simon H., 1996. "Firm-specific information and the correlation between individual stocks and bonds," Journal of Financial Economics, Elsevier, vol. 40(1), pages 63-80, January.
    15. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    16. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    17. Anna Bykhovskaya & Peter C. B. Phillips, 2018. "Boundary Limit Theory for Functional Local to Unity Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(4), pages 523-562, July.
    18. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.
    19. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    20. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    21. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
    22. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-836, July.
    23. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2017. "Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour," Economics and Statistics Working Papers 18-2017, Singapore Management University, School of Economics.
    24. Anna Mikusheva, 2012. "One‐Dimensional Inference in Autoregressive Models With the Potential Presence of a Unit Root," Econometrica, Econometric Society, vol. 80(1), pages 173-212, January.
    25. Anna Bykhovskaya & Peter C. B. Phillips, 2017. "Point Optimal Testing with Roots That Are Functionally Local to Unity," Cowles Foundation Discussion Papers 3007, Cowles Foundation for Research in Economics, Yale University.
    26. Evans, G B A & Savin, N E, 1981. "Testing for Unit Roots: 1," Econometrica, Econometric Society, vol. 49(3), pages 753-779, May.
    27. Stock, James H., 1991. "Confidence intervals for the largest autoregressive root in U.S. macroeconomic time series," Journal of Monetary Economics, Elsevier, vol. 28(3), pages 435-459, December.
    28. Nelson, Charles R. & Plosser, Charles I., 1982. "Trends and random walks in macroeconmic time series : Some evidence and implications," Journal of Monetary Economics, Elsevier, vol. 10(2), pages 139-162.
    29. Phillips,Garry D. A. & Tzavalis,Elias (ed.), 2007. "The Refinement of Econometric Estimation and Test Procedures," Cambridge Books, Cambridge University Press, number 9780521870535, September.
    30. Lieberman, Offer & Phillips, Peter C.B., 2018. "Iv And Gmm Inference In Endogenous Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1065-1100, October.
    31. Anna Mikusheva, 2007. "Uniform Inference in Autoregressive Models," Econometrica, Econometric Society, vol. 75(5), pages 1411-1452, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
    2. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    3. Samuel Brien & Michael Jansson & Morten Ørregaard Nielsen, 2022. "Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order," Working Paper 1429, Economics Department, Queen's University.
    4. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    5. Mika Meitz & Pentti Saikkonen, 2022. "Subgeometrically ergodic autoregressions with autoregressive conditional heteroskedasticity," Papers 2205.11953, arXiv.org, revised Apr 2023.
    6. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    7. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Offer Lieberman & Peter C.B. Phillips, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3013, Cowles Foundation for Research in Economics, Yale University.
    2. Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
    3. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    4. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    5. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.
    6. Lin, Yingqian & Tu, Yundong, 2020. "Robust inference for spurious regressions and cointegrations involving processes moderately deviated from a unit root," Journal of Econometrics, Elsevier, vol. 219(1), pages 52-65.
    7. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    8. Jui-Chung Yang & Ke-Li Xu, 2013. "Estimation and Inference under Weak Identi cation and Persistence: An Application on Forecast-Based Monetary Policy Reaction Function," 2013 Papers pya307, Job Market Papers.
    9. Andrews, Donald W.K. & Guggenberger, Patrik, 2012. "Asymptotics for LS, GLS, and feasible GLS statistics in an AR(1) model with conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 169(2), pages 196-210.
    10. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    11. Liyu Dou & Ulrich K. Müller, 2021. "Generalized Local‐to‐Unity Models," Econometrica, Econometric Society, vol. 89(4), pages 1825-1854, July.
    12. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    13. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    14. Donald W. K. Andrews & Patrik Guggenberger, 2014. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," The Review of Economics and Statistics, MIT Press, vol. 96(2), pages 376-381, May.
    15. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    16. Lee, Ji Hyung, 2016. "Predictive quantile regression with persistent covariates: IVX-QR approach," Journal of Econometrics, Elsevier, vol. 192(1), pages 105-118.
    17. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    18. Inoue, Atsushi & Kilian, Lutz, 2020. "The uniform validity of impulse response inference in autoregressions," Journal of Econometrics, Elsevier, vol. 215(2), pages 450-472.
    19. Muriel, Nelson & González-Farías, Graciela, 2018. "Testing the null of difference stationarity against the alternative of a stochastic unit root: A new test based on multivariate STUR," Econometrics and Statistics, Elsevier, vol. 7(C), pages 46-62.
    20. Lynda Khalaf & Beatriz Peraza López, 2020. "Simultaneous Indirect Inference, Impulse Responses and ARMA Models," Econometrics, MDPI, vol. 8(2), pages 1-26, April.

    More about this item

    Keywords

    Autoregression; Nonlinear diffusion; Stochastic unit roo; Time-varying coefficient;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:2113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.