IDEAS home Printed from https://ideas.repec.org/p/cwl/cwldpp/1964.html
   My bibliography  Save this paper

A Multivariate Stochastic Unit Root Model with an Application to Derivative Pricing

Author

Abstract

This paper extends recent findings of Lieberman and Phillips (2014) on stochastic unit root (SUR) models to a multivariate case including a comprehensive asymptotic theory for estimation of the model's parameters. The extensions are useful because they lead to a generalization of the Black-Scholes formula for derivative pricing. In place of the standard assumption that the price process follows a geometric Brownian motion, we derive a new form of the Black-Scholes equation that allows for a multivariate time varying coefficient element in the price equation. The corresponding formula for the value of a European-type call option is obtained and shown to extend the existing option price formula in a manner that embodies the effect of a stochastic departure from a unit root. An empirical application reveals that the new model is consistent with excess skewness and kurtosis in the price distribution relative to a lognormal distribution.

Suggested Citation

  • Offer Lieberman & Peter C.B. Phillips, 2014. "A Multivariate Stochastic Unit Root Model with an Application to Derivative Pricing," Cowles Foundation Discussion Papers 1964, Cowles Foundation for Research in Economics, Yale University.
  • Handle: RePEc:cwl:cwldpp:1964
    as

    Download full text from publisher

    File URL: https://cowles.yale.edu/sites/default/files/files/pub/d19/d1964.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Peter C. B. Phillips & Jun Yu, 2011. "Dating the timeline of financial bubbles during the subprime crisis," Quantitative Economics, Econometric Society, vol. 2(3), pages 455-491, November.
    2. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Lieberman, Offer, 2010. "Asymptotic Theory For Empirical Similarity Models," Econometric Theory, Cambridge University Press, vol. 26(4), pages 1032-1059, August.
    5. Peter C. B. Phillips, 2015. "Edmond Malinvaud: a tribute to his contributions in econometrics," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 1-13, June.
    6. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    7. Itzhak Gilboa & Offer Lieberman & David Schmeidler, 2012. "Empirical Similarity," World Scientific Book Chapters, in: Case-Based Predictions An Axiomatic Approach to Prediction, Classification and Statistical Learning, chapter 9, pages 211-243, World Scientific Publishing Co. Pte. Ltd..
    8. Tomas Björk & Henrik Hult, 2005. "A note on Wick products and the fractional Black-Scholes model," Finance and Stochastics, Springer, vol. 9(2), pages 197-209, April.
    9. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    10. Phillips, Peter C.B. & Magdalinos, Tassos, 2007. "Limit theory for moderate deviations from a unit root," Journal of Econometrics, Elsevier, vol. 136(1), pages 115-130, January.
    11. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    12. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    13. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    14. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    15. Eric Renault & Nizar Touzi, 1996. "Option Hedging And Implied Volatilities In A Stochastic Volatility Model1," Mathematical Finance, Wiley Blackwell, vol. 6(3), pages 279-302, July.
    16. Ai[diaeresis]t-Sahalia, Yacine & Kimmel, Robert, 2007. "Maximum likelihood estimation of stochastic volatility models," Journal of Financial Economics, Elsevier, vol. 83(2), pages 413-452, February.
    17. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
    2. Chaoyi Chen & Thanasis Stengos, 2022. "Estimation and Inference for the Threshold Model with Hybrid Stochastic Local Unit Root Regressors," JRFM, MDPI, vol. 15(6), pages 1-15, May.
    3. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.
    4. Liyu Dou & Ulrich K. Müller, 2021. "Generalized Local‐to‐Unity Models," Econometrica, Econometric Society, vol. 89(4), pages 1825-1854, July.
    5. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    6. Samuel Brien & Michael Jansson & Morten Ørregaard Nielsen, 2022. "Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order," Working Paper 1429, Economics Department, Queen's University.
    7. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    8. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    9. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    10. Muriel, Nelson & González-Farías, Graciela, 2018. "Testing the null of difference stationarity against the alternative of a stochastic unit root: A new test based on multivariate STUR," Econometrics and Statistics, Elsevier, vol. 7(C), pages 46-62.
    11. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    12. Donald W. K. Andrews & Ming Li, 2024. "Inference in a Stationary/Nonstationary Autoregressive Time-Varying-Parameter Model," Papers 2411.00358, arXiv.org.
    13. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    14. Donald W. K. Andrews & Ming Li, 2024. "Inference in a Stationary/Nonstationary Autoregressive Time-Varying-Parameter Model," Cowles Foundation Discussion Papers 2389, Cowles Foundation for Research in Economics, Yale University.
    15. Lingjie Du & Tianxiao Pang, 2021. "Asymptotic Theory for a Stochastic Unit Root Model with Intercept and Under Mis-Specification of Intercept," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 767-799, September.
    16. Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossi, Francesca & Lieberman, Offer, 2023. "Spatial autoregressions with an extended parameter space and similarity-based weights," Journal of Econometrics, Elsevier, vol. 235(2), pages 1770-1798.
    2. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    3. Audrino, Francesco & Fengler, Matthias R., 2015. "Are classical option pricing models consistent with observed option second-order moments? Evidence from high-frequency data," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 46-63.
    4. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    5. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    6. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    7. Robert Azencott & Yutheeka Gadhyan & Roland Glowinski, 2014. "Option Pricing Accuracy for Estimated Heston Models," Papers 1404.4014, arXiv.org, revised Jul 2015.
    8. Cosma, Antonio & Galluccio, Stefano & Scaillet, Olivier, 2012. "Valuing American options using fast recursive projections," Working Papers unige:41856, University of Geneva, Geneva School of Economics and Management.
    9. Nappo, Giovanna & Marchetti, Fabio Massimo & Vagnani, Gianluca, 2023. "Traders’ heterogeneous beliefs about stock volatility and the implied volatility skew in financial options markets," Finance Research Letters, Elsevier, vol. 53(C).
    10. Sha Lin & Xin-Jiang He, 2022. "Analytically Pricing European Options under a New Two-Factor Heston Model with Regime Switching," Computational Economics, Springer;Society for Computational Economics, vol. 59(3), pages 1069-1085, March.
    11. Kanniainen, Juho & Piché, Robert, 2013. "Stock price dynamics and option valuations under volatility feedback effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(4), pages 722-740.
    12. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    13. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2019. "An analytical perturbative solution to the Merton Garman model using symmetries," Papers 1909.01413, arXiv.org, revised Jan 2021.
    14. Rombouts, Jeroen V.K. & Stentoft, Lars, 2015. "Option pricing with asymmetric heteroskedastic normal mixture models," International Journal of Forecasting, Elsevier, vol. 31(3), pages 635-650.
    15. Liu, Chang & Chang, Chuo, 2021. "Combination of transition probability distribution and stable Lorentz distribution in stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    16. Harish S. Bhat & Nitesh Kumar, 2015. "Large-Scale Empirical Tests of the Markov Tree Model," IJFS, MDPI, vol. 3(3), pages 1-39, July.
    17. Xavier Calmet & Nathaniel Wiesendanger Shaw, 2020. "An analytical perturbative solution to the Merton–Garman model using symmetries," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(1), pages 3-22, January.
    18. Garcia, Rene & Luger, Richard & Renault, Eric, 2003. "Empirical assessment of an intertemporal option pricing model with latent variables," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 49-83.
    19. Jiang, George J. & Tian, Yisong S., 2010. "Misreaction or misspecification? A re-examination of volatility anomalies," Journal of Banking & Finance, Elsevier, vol. 34(10), pages 2358-2369, October.
    20. Badescu Alex & Kulperger Reg & Lazar Emese, 2008. "Option Valuation with Normal Mixture GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-42, May.

    More about this item

    Keywords

    Autoregression; Derivative; Diffusion; Options; Similarity; Stochastic unit root; Time-varying coefficients;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1964. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Brittany Ladd (email available below). General contact details of provider: https://edirc.repec.org/data/cowleus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.