IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v227y2022i1p25-46.html
   My bibliography  Save this article

Understanding temporal aggregation effects on kurtosis in financial indices

Author

Listed:
  • Lieberman, Offer
  • Phillips, Peter C.B.

Abstract

Indices of financial returns typically display sample kurtosis that declines towards the Gaussian value 3 as the sampling interval increases. This paper uses stochastic unit root (STUR) and continuous time analysis to explain the phenomenon. Limit theory for the sample kurtosis reveals that STUR specifications provide two sources of excess kurtosis, both of which decline with the sampling interval. Limiting kurtosis is shown to be random and is a functional of the limiting price process. Using a continuous time version of the model under no-drift, local drift, and drift inclusions, we suggest a new continuous time kurtosis measure for financial returns that assists in reconciling these models with the empirical kurtosis characteristics of returns. Simulations are reported and applications to several financial indices demonstrate the usefulness of this approach.

Suggested Citation

  • Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
  • Handle: RePEc:eee:econom:v:227:y:2022:i:1:p:25-46
    DOI: 10.1016/j.jeconom.2020.07.035
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030440762030258X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2020.07.035?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Lau, Hon-Shiang & Wingender, John R, 1989. "The Analytics of the Intervaling Effect on Skewness and Kurtosis of Stock Returns," The Financial Review, Eastern Finance Association, vol. 24(2), pages 215-233, May.
    2. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    3. Leybourne, S J & McCabe, B P M & Tremayne, A R, 1996. "Can Economic Time Series Be Differenced to Stationarity?," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 435-446, October.
    4. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    5. Gawon Yoon, 2006. "A Note on Some Properties of STUR Processes," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(2), pages 253-260, April.
    6. Lieberman, Offer & Phillips, Peter C.B., 2017. "A multivariate stochastic unit root model with an application to derivative pricing," Journal of Econometrics, Elsevier, vol. 196(1), pages 99-110.
    7. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    8. Hans Föllmer & Martin Schweizer, 1993. "A Microeconomic Approach to Diffusion Models For Stock Prices," Mathematical Finance, Wiley Blackwell, vol. 3(1), pages 1-23, January.
    9. Offer Lieberman, 2012. "A similarity‐based approach to time‐varying coefficient non‐stationary autoregression," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 484-502, May.
    10. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    11. Anna Bykhovskaya & Peter C. B. Phillips, 2018. "Boundary Limit Theory for Functional Local to Unity Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(4), pages 523-562, July.
    12. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.
    13. Peter C. B. Phillips, 2014. "On Confidence Intervals for Autoregressive Roots and Predictive Regression," Econometrica, Econometric Society, vol. 82(3), pages 1177-1195, May.
    14. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    15. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
    16. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2017. "Random Coefficient Continuous Systems: Testing for Extreme Sample Path Behaviour," Economics and Statistics Working Papers 18-2017, Singapore Management University, School of Economics.
    17. Lieberman, Offer & Phillips, Peter C.B., 2018. "Iv And Gmm Inference In Endogenous Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1065-1100, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    2. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.
    3. Tao, Yubo & Phillips, Peter C.B. & Yu, Jun, 2019. "Random coefficient continuous systems: Testing for extreme sample path behavior," Journal of Econometrics, Elsevier, vol. 209(2), pages 208-237.
    4. Offer Lieberman & Peter C.B. Phillips, 2017. "Latent Variable Nonparametric Cointegrating Regression," Cowles Foundation Discussion Papers 3013, Cowles Foundation for Research in Economics, Yale University.
    5. Horváth, Lajos & Trapani, Lorenzo, 2019. "Testing for randomness in a random coefficient autoregression model," Journal of Econometrics, Elsevier, vol. 209(2), pages 338-352.
    6. Samuel Brien & Michael Jansson & Morten Ørregaard Nielsen, 2022. "Nearly Efficient Likelihood Ratio Tests of a Unit Root in an Autoregressive Model of Arbitrary Order," Working Paper 1429, Economics Department, Queen's University.
    7. Offer Lieberman & Peter C. B. Phillips, 2014. "Norming Rates And Limit Theory For Some Time-Varying Coefficient Autoregressions," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(6), pages 592-623, November.
    8. Donald W. K. Andrews & Ming Li, 2024. "Inference in a Stationary/Nonstationary Autoregressive Time-Varying-Parameter Model," Papers 2411.00358, arXiv.org.
    9. Muriel, Nelson & González-Farías, Graciela, 2018. "Testing the null of difference stationarity against the alternative of a stochastic unit root: A new test based on multivariate STUR," Econometrics and Statistics, Elsevier, vol. 7(C), pages 46-62.
    10. Donald W. K. Andrews & Ming Li, 2024. "Inference in a Stationary/Nonstationary Autoregressive Time-Varying-Parameter Model," Cowles Foundation Discussion Papers 2389, Cowles Foundation for Research in Economics, Yale University.
    11. Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.
    12. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    13. Lingjie Du & Tianxiao Pang, 2021. "Asymptotic Theory for a Stochastic Unit Root Model with Intercept and Under Mis-Specification of Intercept," Methodology and Computing in Applied Probability, Springer, vol. 23(3), pages 767-799, September.
    14. Lorenzo Trapani, 2021. "Testing for strict stationarity in a random coefficient autoregressive model," Econometric Reviews, Taylor & Francis Journals, vol. 40(3), pages 220-256, April.
    15. Bykhovskaya, Anna & Phillips, Peter C.B., 2020. "Point optimal testing with roots that are functionally local to unity," Journal of Econometrics, Elsevier, vol. 219(2), pages 231-259.
    16. Gawon Yoon, 2010. "Nonlinear mean reversion in real exchange rates: threshold autoregressive models and stochastic unit root processes," Applied Economics Letters, Taylor & Francis Journals, vol. 17(8), pages 797-804.
    17. Gawon Yoon, 2010. "Nonlinear mean-reversion to purchasing power parity: exponential smooth transition autoregressive models and stochastic unit root processes," Applied Economics, Taylor & Francis Journals, vol. 42(4), pages 489-496.
    18. Sabzikar, Farzad & Wang, Qiying & Phillips, Peter C.B., 2020. "Asymptotic theory for near integrated processes driven by tempered linear processes," Journal of Econometrics, Elsevier, vol. 216(1), pages 192-202.
    19. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    20. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.

    More about this item

    Keywords

    Autoregression; Diffusion; Kurtosis; Stochastic unit root; Time-varying coefficients;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:227:y:2022:i:1:p:25-46. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.