IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v34y2018i05p1065-1100_00.html
   My bibliography  Save this article

Iv And Gmm Inference In Endogenous Stochastic Unit Root Models

Author

Listed:
  • Lieberman, Offer
  • Phillips, Peter C.B.

Abstract

Lieberman and Phillips (2017; LP) introduced a multivariate stochastic unit root (STUR) model, which allows for random, time varying local departures from a unit root (UR) model, where nonlinear least squares (NLLS) may be used for estimation and inference on the STUR coefficient. In a structural version of this model where the driver variables of the STUR coefficient are endogenous, the NLLS estimate of the STUR parameter is inconsistent, as are the corresponding estimates of the associated covariance parameters. This paper develops a nonlinear instrumental variable (NLIV) as well as GMM estimators of the STUR parameter which conveniently addresses endogeneity. We derive the asymptotic distributions of the NLIV and GMM estimators and establish consistency under similar orthogonality and relevance conditions to those used in the linear model. An overidentification test and its asymptotic distribution are also developed. The results enable inference about structural STUR models and a mechanism for testing the local STUR model against a simple UR null, which complements usual UR tests. Simulations reveal that the asymptotic distributions of the NLIV and GMM estimators of the STUR parameter as well as the test for overidentifying restrictions perform well in small samples and that the distribution of the NLIV estimator is heavily leptokurtic with a limit theory which has Cauchy-like tails. Comparisons of STUR coefficient and standard UR coefficient tests show that the one-sided UR test performs poorly against the one-sided STUR coefficient test both as the sample size and departures from the null rise. The results are applied to study the relationships between stock returns and bond spread changes.

Suggested Citation

  • Lieberman, Offer & Phillips, Peter C.B., 2018. "Iv And Gmm Inference In Endogenous Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 34(5), pages 1065-1100, October.
  • Handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:1065-1100_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466617000330/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lieberman, Offer & Phillips, Peter C.B., 2022. "Understanding temporal aggregation effects on kurtosis in financial indices," Journal of Econometrics, Elsevier, vol. 227(1), pages 25-46.
    2. Jiang, Shangrong & Li, Yuze & Wang, Shouyang & Zhao, Lin, 2022. "Blockchain competition: The tradeoff between platform stability and efficiency," European Journal of Operational Research, Elsevier, vol. 296(3), pages 1084-1097.
    3. Farzad Sabzikar & Piotr Kokoszka, 2023. "Tempered functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 280-293, May.
    4. Lieberman, Offer & Phillips, Peter C.B., 2020. "Hybrid stochastic local unit roots," Journal of Econometrics, Elsevier, vol. 215(1), pages 257-285.
    5. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    6. Liu, Yanbo & Phillips, Peter C.B., 2023. "Robust inference with stochastic local unit root regressors in predictive regressions," Journal of Econometrics, Elsevier, vol. 235(2), pages 563-591.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:34:y:2018:i:05:p:1065-1100_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.