IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1901.04861.html
   My bibliography  Save this paper

Inference on Functionals under First Order Degeneracy

Author

Listed:
  • Qihui Chen
  • Zheng Fang

Abstract

This paper presents a unified second order asymptotic framework for conducting inference on parameters of the form $\phi(\theta_0)$, where $\theta_0$ is unknown but can be estimated by $\hat\theta_n$, and $\phi$ is a known map that admits null first order derivative at $\theta_0$. For a large number of examples in the literature, the second order Delta method reveals a nondegenerate weak limit for the plug-in estimator $\phi(\hat\theta_n)$. We show, however, that the `standard' bootstrap is consistent if and only if the second order derivative $\phi_{\theta_0}''=0$ under regularity conditions, i.e., the standard bootstrap is inconsistent if $\phi_{\theta_0}''\neq 0$, and provides degenerate limits unhelpful for inference otherwise. We thus identify a source of bootstrap failures distinct from that in Fang and Santos (2018) because the problem (of consistently bootstrapping a \textit{nondegenerate} limit) persists even if $\phi$ is differentiable. We show that the correction procedure in Babu (1984) can be extended to our general setup. Alternatively, a modified bootstrap is proposed when the map is \textit{in addition} second order nondifferentiable. Both are shown to provide local size control under some conditions. As an illustration, we develop a test of common conditional heteroskedastic (CH) features, a setting with both degeneracy and nondifferentiability -- the latter is because the Jacobian matrix is degenerate at zero and we allow the existence of multiple common CH features.

Suggested Citation

  • Qihui Chen & Zheng Fang, 2019. "Inference on Functionals under First Order Degeneracy," Papers 1901.04861, arXiv.org.
  • Handle: RePEc:arx:papers:1901.04861
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1901.04861
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ploberger, Werner & Phillips, Peter C.B., 2012. "Optimal estimation under nonstandard conditions," Journal of Econometrics, Elsevier, vol. 169(2), pages 258-265.
    2. Linton, Oliver & Song, Kyungchul & Whang, Yoon-Jae, 2010. "An improved bootstrap test of stochastic dominance," Journal of Econometrics, Elsevier, vol. 154(2), pages 186-202, February.
    3. Donald W. K. Andrews & Xiaoxia Shi, 2013. "Inference Based on Conditional Moment Inequalities," Econometrica, Econometric Society, vol. 81(2), pages 609-666, March.
    4. Andrews, Donald W.K. & Guggenberger, Patrik, 2010. "ASYMPTOTIC SIZE AND A PROBLEM WITH SUBSAMPLING AND WITH THE m OUT OF n BOOTSTRAP," Econometric Theory, Cambridge University Press, vol. 26(2), pages 426-468, April.
    5. Bryan W. Brown & Whitney K. Newey, 1998. "Efficient Semiparametric Estimation of Expectations," Econometrica, Econometric Society, vol. 66(2), pages 453-464, March.
    6. Hiroaki Kaido & Andres Santos, 2014. "Asymptotically Efficient Estimation of Models Defined by Convex Moment Inequalities," Econometrica, Econometric Society, vol. 82(1), pages 387-413, January.
    7. Andrews, Donald W.K. & Shi, Xiaoxia, 2014. "Nonparametric inference based on conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 179(1), pages 31-45.
    8. Victor Chernozhukov & Han Hong & Elie Tamer, 2007. "Estimation and Confidence Regions for Parameter Sets in Econometric Models," Econometrica, Econometric Society, vol. 75(5), pages 1243-1284, September.
    9. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    10. Victor Chernozhukov & Han Hong, 2004. "Likelihood Estimation and Inference in a Class of Nonregular Econometric Models," Econometrica, Econometric Society, vol. 72(5), pages 1445-1480, September.
    11. Keisuke Hirano & Jack R. Porter, 2012. "Impossibility Results for Nondifferentiable Functionals," Econometrica, Econometric Society, vol. 80(4), pages 1769-1790, July.
    12. Prosper Dovonon & Eric Renault, 2013. "Testing for Common Conditionally Heteroskedastic Factors," Econometrica, Econometric Society, vol. 81(6), pages 2561-2586, November.
    13. Charalambos D. Aliprantis & Kim C. Border, 2006. "Infinite Dimensional Analysis," Springer Books, Springer, edition 0, number 978-3-540-29587-7, January.
    14. repec:cwl:cwldpp:1840rr is not listed on IDEAS
    15. Donald W. K. Andrews & Gustavo Soares, 2010. "Inference for Parameters Defined by Moment Inequalities Using Generalized Moment Selection," Econometrica, Econometric Society, vol. 78(1), pages 119-157, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Firpo, Sergio & Galvao, Antonio F. & Parker, Thomas, 2023. "Uniform inference for value functions," Journal of Econometrics, Elsevier, vol. 235(2), pages 1680-1699.
    2. Dovonon, Prosper & Taamouti, Abderrahim & Williams, Julian, 2022. "Testing the eigenvalue structure of spot and integrated covariance," Journal of Econometrics, Elsevier, vol. 229(2), pages 363-395.
    3. Xingyu Li & Xiaojun Song & Zhenting Sun, 2022. "A Unified Nonparametric Test of Transformations on Distribution Functions with Nuisance Parameters," Papers 2202.11031, arXiv.org, revised Aug 2022.
    4. Lee, K. & Linton, O. & Whang, Y-J., 2020. "Testing for Time Stochastic Dominance," Cambridge Working Papers in Economics 20121, Faculty of Economics, University of Cambridge.
    5. Qihui Chen & Zheng Fang, 2018. "Improved Inference on the Rank of a Matrix," Papers 1812.02337, arXiv.org, revised Mar 2019.
    6. Hong, Han & Li, Jessie, 2018. "The numerical delta method," Journal of Econometrics, Elsevier, vol. 206(2), pages 379-394.
    7. Lee, Kyungho & Linton, Oliver & Whang, Yoon-Jae, 2023. "Testing for time stochastic dominance," Journal of Econometrics, Elsevier, vol. 235(2), pages 352-371.
    8. Brendan K. Beare & Jackson D. Clarke, 2022. "Modified Wilcoxon-Mann-Whitney tests of stochastic dominance," Papers 2210.08892, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Qihui & Fang, Zheng, 2019. "Inference on functionals under first order degeneracy," Journal of Econometrics, Elsevier, vol. 210(2), pages 459-481.
    2. Victor Chernozhukov & Whitney K. Newey & Andres Santos, 2023. "Constrained Conditional Moment Restriction Models," Econometrica, Econometric Society, vol. 91(2), pages 709-736, March.
    3. Kaido, Hiroaki, 2017. "Asymptotically Efficient Estimation Of Weighted Average Derivatives With An Interval Censored Variable," Econometric Theory, Cambridge University Press, vol. 33(5), pages 1218-1241, October.
    4. Yuan Liao & Anna Simoni, 2012. "Semi-parametric Bayesian Partially Identified Models based on Support Function," Papers 1212.3267, arXiv.org, revised Nov 2013.
    5. Yu Zhu, 2020. "Inference in nonparametric/semiparametric moment equality models with shape restrictions," Quantitative Economics, Econometric Society, vol. 11(2), pages 609-636, May.
    6. Andrews, Donald W.K. & Cheng, Xu & Guggenberger, Patrik, 2020. "Generic results for establishing the asymptotic size of confidence sets and tests," Journal of Econometrics, Elsevier, vol. 218(2), pages 496-531.
    7. Armstrong, Timothy B., 2015. "Asymptotically exact inference in conditional moment inequality models," Journal of Econometrics, Elsevier, vol. 186(1), pages 51-65.
    8. Sun, Zhenting, 2023. "Instrument validity for heterogeneous causal effects," Journal of Econometrics, Elsevier, vol. 237(2).
    9. Bulat Gafarov, 2019. "Simple subvector inference on sharp identified set in affine models," Papers 1904.00111, arXiv.org, revised Jul 2024.
    10. Chuang, O-Chia & Kuan, Chung-Ming & Tzeng, Larry Y., 2017. "Testing for central dominance: Method and application," Journal of Econometrics, Elsevier, vol. 196(2), pages 368-378.
    11. Victor Chernozhukov & Denis Chetverikov & Kengo Kato, 2013. "Testing Many Moment Inequalities," CeMMAP working papers 65/13, Institute for Fiscal Studies.
    12. Steven T Berry & Giovanni Compiani, 2023. "An Instrumental Variable Approach to Dynamic Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1724-1758.
    13. Hiroaki Kaido & Francesca Molinari & Jörg Stoye, 2019. "Confidence Intervals for Projections of Partially Identified Parameters," Econometrica, Econometric Society, vol. 87(4), pages 1397-1432, July.
    14. Chen, Le-Yu & Lee, Sokbae, 2019. "Breaking the curse of dimensionality in conditional moment inequalities for discrete choice models," Journal of Econometrics, Elsevier, vol. 210(2), pages 482-497.
    15. Francesca Molinari, 2020. "Microeconometrics with Partial Identi?cation," CeMMAP working papers CWP15/20, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    16. Hsu, Yu-Chin & Shen, Shu, 2019. "Testing treatment effect heterogeneity in regression discontinuity designs," Journal of Econometrics, Elsevier, vol. 208(2), pages 468-486.
    17. Arun G. Chandrasekhar & Victor Chernozhukov & Francesca Molinari & Paul Schrimpf, 2019. "Best Linear Approximations to Set Identified Functions: With an Application to the Gender Wage Gap," NBER Working Papers 25593, National Bureau of Economic Research, Inc.
    18. Aradillas-López, Andrés & Rosen, Adam M., 2022. "Inference in ordered response games with complete information," Journal of Econometrics, Elsevier, vol. 226(2), pages 451-476.
    19. Bontemps, Christian & Kumar, Rohit, 2020. "A geometric approach to inference in set-identified entry games," Journal of Econometrics, Elsevier, vol. 218(2), pages 373-389.
    20. Semenova, Vira, 2023. "Debiased machine learning of set-identified linear models," Journal of Econometrics, Elsevier, vol. 235(2), pages 1725-1746.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1901.04861. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.