IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v32y2016i06p1349-1375_00.html
   My bibliography  Save this article

Weak Convergence To Stochastic Integrals For Econometric Applications

Author

Listed:
  • Liang, Hanying
  • Phillips, Peter C.B.
  • Wang, Hanchao
  • Wang, Qiying

Abstract

Limit theory involving stochastic integrals is now widespread in time series econometrics and relies on a few key results on functional weak convergence. In establishing such convergence, the literature commonly uses martingale and semimartingale structures. While these structures have wide relevance, many applications involve a cointegration framework where endogeneity and nonlinearity play major roles and complicate the limit theory. This paper explores weak convergence limit theory to stochastic integral functionals in such settings. We use a novel decomposition of sample covariances of functions of I (1) and I (0) time series that simplifies the asymptotics and our limit results for such covariances hold for linear process, long memory, and mixing variates in the innovations. These results extend earlier findings in the literature, are relevant in many applications, and involve simple conditions that facilitate practical implementation. A nonlinear extension of FM regression is used to illustrate practical application of the methods.

Suggested Citation

  • Liang, Hanying & Phillips, Peter C.B. & Wang, Hanchao & Wang, Qiying, 2016. "Weak Convergence To Stochastic Integrals For Econometric Applications," Econometric Theory, Cambridge University Press, vol. 32(6), pages 1349-1375, December.
  • Handle: RePEc:cup:etheor:v:32:y:2016:i:06:p:1349-1375_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466615000274/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Phillips, P.C.B., 1989. "Partially Identified Econometric Models," Econometric Theory, Cambridge University Press, vol. 5(2), pages 181-240, August.
    2. Peter C. B. Phillips & Bruce E. Hansen, 1990. "Statistical Inference in Instrumental Variables Regression with I(1) Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 57(1), pages 99-125.
    3. Park, Joon Y. & Phillips, Peter C.B., 1989. "Statistical Inference in Regressions with Integrated Processes: Part 2," Econometric Theory, Cambridge University Press, vol. 5(1), pages 95-131, April.
    4. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    5. Hansen, Bruce E., 1992. "Convergence to Stochastic Integrals for Dependent Heterogeneous Processes," Econometric Theory, Cambridge University Press, vol. 8(4), pages 489-500, December.
    6. Ibragimov, Rustam & Phillips, Peter C.B., 2008. "Regression Asymptotics Using Martingale Convergence Methods," Econometric Theory, Cambridge University Press, vol. 24(4), pages 888-947, August.
    7. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    8. Wang, Qiying & Phillips, Peter C.B., 2011. "Asymptotic Theory For Zero Energy Functionals With Nonparametric Regression Applications," Econometric Theory, Cambridge University Press, vol. 27(2), pages 235-259, April.
    9. Wang, Qiying & Phillips, Peter C.B., 2009. "Asymptotic Theory For Local Time Density Estimation And Nonparametric Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 25(3), pages 710-738, June.
    10. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    11. Park, Joon Y. & Phillips, Peter C.B., 1988. "Statistical Inference in Regressions with Integrated Processes: Part 1," Econometric Theory, Cambridge University Press, vol. 4(3), pages 468-497, December.
    12. Cheng, Tsung-Lin & Chow, Yuan-Shih, 2002. "On stable convergence in the central limit theorem," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 307-313, May.
    13. Wang, Qiying & Lin, Yan-Xia & Gulati, Chandra M., 2003. "Asymptotics For General Fractionally Integrated Processes With Applications To Unit Root Tests," Econometric Theory, Cambridge University Press, vol. 19(1), pages 143-164, February.
    14. Wang, Qiying, 2014. "Martingale Limit Theorem Revisited And Nonlinear Cointegrating Regression," Econometric Theory, Cambridge University Press, vol. 30(3), pages 509-535, June.
    15. Joon Y. Park & Peter C. B. Phillips, 2000. "Nonstationary Binary Choice," Econometrica, Econometric Society, vol. 68(5), pages 1249-1280, September.
    16. Qiying Wang & Peter C. B. Phillips, 2009. "Structural Nonparametric Cointegrating Regression," Econometrica, Econometric Society, vol. 77(6), pages 1901-1948, November.
    17. de Jong, Robert M. & Davidson, James, 2000. "The Functional Central Limit Theorem And Weak Convergence To Stochastic Integrals I," Econometric Theory, Cambridge University Press, vol. 16(5), pages 621-642, October.
    18. Phillips, P C B, 1991. "Optimal Inference in Cointegrated Systems," Econometrica, Econometric Society, vol. 59(2), pages 283-306, March.
    19. Park, Joon Y. & Phillips, Peter C.B., 1999. "Asymptotics For Nonlinear Transformations Of Integrated Time Series," Econometric Theory, Cambridge University Press, vol. 15(3), pages 269-298, June.
    20. Phillips, P.C.B., 1988. "Weak Convergence of Sample Covariance Matrices to Stochastic Integrals Via Martingale Approximations," Econometric Theory, Cambridge University Press, vol. 4(3), pages 528-533, December.
    21. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    22. Darrell Duffie & Philip Protter, 1992. "From Discrete‐ to Continuous‐Time Finance: Weak Convergence of the Financial Gain Process1," Mathematical Finance, Wiley Blackwell, vol. 2(1), pages 1-15, January.
    23. Jeganathan, P., 1995. "Some Aspects of Asymptotic Theory with Applications to Time Series Models," Econometric Theory, Cambridge University Press, vol. 11(5), pages 818-887, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qiying & Wu, Dongsheng & Zhu, Ke, 2018. "Model checks for nonlinear cointegrating regression," Journal of Econometrics, Elsevier, vol. 207(2), pages 261-284.
    2. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    3. Phillips, Peter C.B. & Wang, Ying, 2023. "When bias contributes to variance: True limit theory in functional coefficient cointegrating regression," Journal of Econometrics, Elsevier, vol. 232(2), pages 469-489.
    4. Rickard Sandberg, 2017. "Sample Moments and Weak Convergence to Multivariate Stochastic Power Integrals," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(6), pages 1000-1009, November.
    5. Bykhovskaya, Anna & Duffy, James A., 2024. "The local to unity dynamic Tobit model," Journal of Econometrics, Elsevier, vol. 241(2).
    6. Stypka, Oliver & Wagner, Martin & Grabarczyk, Peter & Kawka, Rafael, 2017. "The Asymptotic Validity of "Standard" Fully Modified OLS Estimation and Inference in Cointegrating Polynomial Regressions," Economics Series 333, Institute for Advanced Studies.
    7. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    8. Zhengyan Lin & Hanchao Wang, 2016. "On Convergence to Stochastic Integrals," Journal of Theoretical Probability, Springer, vol. 29(3), pages 717-736, September.
    9. Anna Bykhovskaya & James A. Duffy, 2022. "The Local to Unity Dynamic Tobit Model," Papers 2210.02599, arXiv.org, revised May 2024.
    10. Offer Lieberman & Peter C.B. Phillips, 2016. "IV and GMM Estimation and Testing of Multivariate Stochastic Unit Root Models," Cowles Foundation Discussion Papers 2061, Cowles Foundation for Research in Economics, Yale University.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    2. Phillips, Peter C.B. & Li, Degui & Gao, Jiti, 2017. "Estimating smooth structural change in cointegration models," Journal of Econometrics, Elsevier, vol. 196(1), pages 180-195.
    3. Arai, Yoichi, 2016. "Testing For Linearity In Regressions With I(1) Processes," Hitotsubashi Journal of Economics, Hitotsubashi University, vol. 57(1), pages 111-138, June.
    4. Chan, Nigel & Wang, Qiying, 2015. "Nonlinear regressions with nonstationary time series," Journal of Econometrics, Elsevier, vol. 185(1), pages 182-195.
    5. Biqing Cai & Jiti Gao & Dag Tjøstheim, 2017. "A New Class of Bivariate Threshold Cointegration Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 288-305, April.
    6. Zhishui Hu & Ioannis Kasparis & Qiying Wang, 2020. "Locally trimmed least squares: conventional inference in possibly nonstationary models," Papers 2006.12595, arXiv.org.
    7. Qiying Wang & Peter C. B. Phillips & Ying Wang, 2023. "New asymptotics applied to functional coefficient regression and climate sensitivity analysis," Cowles Foundation Discussion Papers 2365, Cowles Foundation for Research in Economics, Yale University.
    8. Li, Dao & He, Changli, 2012. "Testing for Linear Cointegration Against Smooth-Transition Cointegration," Working Papers 2012:6, Örebro University, School of Business.
    9. Kasparis, Ioannis & Phillips, Peter C.B., 2012. "Dynamic misspecification in nonparametric cointegrating regression," Journal of Econometrics, Elsevier, vol. 168(2), pages 270-284.
    10. Yoosoon Chang & Joon Y. Park & Peter C. B. Phillips, 2001. "Nonlinear econometric models with cointegrated and deterministically trending regressors," Econometrics Journal, Royal Economic Society, vol. 4(1), pages 1-36.
    11. Peter Phillips & Hyungsik Moon, 2000. "Nonstationary panel data analysis: an overview of some recent developments," Econometric Reviews, Taylor & Francis Journals, vol. 19(3), pages 263-286.
    12. Li, Degui & Phillips, Peter C.B. & Gao, Jiti, 2020. "Kernel-based Inference in Time-Varying Coefficient Cointegrating Regression," Journal of Econometrics, Elsevier, vol. 215(2), pages 607-632.
    13. Minxian, Yang, 1998. "System estimators of cointegrating matrix in absence of normalising information," Journal of Econometrics, Elsevier, vol. 85(2), pages 317-337, August.
    14. Peter C. B. Phillips, 2003. "Laws and Limits of Econometrics," Economic Journal, Royal Economic Society, vol. 113(486), pages 26-52, March.
    15. Jiti Gao & Peter C.B. Phillips, 2011. "Semiparametric Estimation in Multivariate Nonstationary Time Series Models," Monash Econometrics and Business Statistics Working Papers 17/11, Monash University, Department of Econometrics and Business Statistics.
    16. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    17. Pentti Saikkonen & Rickard Sandberg, 2016. "Testing for a Unit Root in Noncausal Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 99-125, January.
    18. Hu, Zhishui & Phillips, Peter C.B. & Wang, Qiying, 2021. "Nonlinear Cointegrating Power Function Regression With Endogeneity," Econometric Theory, Cambridge University Press, vol. 37(6), pages 1173-1213, December.
    19. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(5), pages 912-951, October.
    20. Chang, Yoosoon, 2003. "Nonlinear IV Panel Unit Root Tests," Working Papers 2003-06, Rice University, Department of Economics.

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:32:y:2016:i:06:p:1349-1375_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.