IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v23y2002i6p651-665.html
   My bibliography  Save this article

Temporal aggregation and spurious instantaneous causality in multiple time series models

Author

Listed:
  • JÖRG BREITUNG
  • NORMAN R. SWANSON

Abstract

Large aggregation interval asymptotics are used to investigate the relation between Granger causality in disaggregated vector autoregressions (VARs) and associated contemporaneous correlation among innovations of the aggregated system. One of our main contributions is that we outline various conditions under which the informational content of error covariance matrices yields insight into the causal structure of the VAR. Monte Carlo results suggest that our asymptotic findings are applicable even when the aggregation interval is small, as long as the time series are not characterized by high levels of persistence.

Suggested Citation

  • Jörg Breitung & Norman R. Swanson, 2002. "Temporal aggregation and spurious instantaneous causality in multiple time series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(6), pages 651-665, November.
  • Handle: RePEc:bla:jtsera:v:23:y:2002:i:6:p:651-665
    DOI: 10.1111/1467-9892.00284
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-9892.00284
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-9892.00284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qian, Hang, 2012. "Essays on statistical inference with imperfectly observed data," ISU General Staff Papers 201201010800003618, Iowa State University, Department of Economics.
    2. Choi, Chi-Young & Mark, Nelson C. & Sul, Donggyu, 2006. "Unbiased Estimation of the Half-Life to PPP Convergence in Panel Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(4), pages 921-938, June.
    3. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    4. Götz, Thomas B. & Hecq, Alain & Smeekes, Stephan, 2016. "Testing for Granger causality in large mixed-frequency VARs," Journal of Econometrics, Elsevier, vol. 193(2), pages 418-432.
    5. Dimitra Papadovasilaki & Federico Guerrero & Rattaphon Wuthisatian & Bhraman Gulati, 2022. "The 1920s technological revolution and the crash of 1929: the role of RCA, DuPont, General Motors, and Union Carbide," SN Business & Economics, Springer, vol. 2(5), pages 1-22, May.
    6. Stefan J. Hock & Sascha Raithel, 2020. "Managing Negative Celebrity Endorser Publicity: How Announcements of Firm (Non)Responses Affect Stock Returns," Management Science, INFORMS, vol. 66(3), pages 1473-1495, March.
    7. Mamingi Nlandu, 2017. "Beauty and Ugliness of Aggregation over Time: A Survey," Review of Economics, De Gruyter, vol. 68(3), pages 205-227, December.
    8. Ghysels, Eric & Hill, Jonathan B. & Motegi, Kaiji, 2016. "Testing for Granger causality with mixed frequency data," Journal of Econometrics, Elsevier, vol. 192(1), pages 207-230.
    9. Andrea Silvestrini & David Veredas, 2008. "Temporal Aggregation Of Univariate And Multivariate Time Series Models: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 22(3), pages 458-497, July.
    10. McCrorie, J. Roderick & Chambers, Marcus J., 2006. "Granger causality and the sampling of economic processes," Journal of Econometrics, Elsevier, vol. 132(2), pages 311-336, June.
    11. Nicholas Taylor, 2008. "The predictive value of temporally disaggregated volatility: evidence from index futures markets," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(8), pages 721-742.
    12. Wang, Zijun, 2012. "The causal structure of bond yields," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 93-102.
    13. Wang, Zijun & Yang, Jian & Li, Qi, 2007. "Interest rate linkages in the Eurocurrency market: Contemporaneous and out-of-sample Granger causality tests," Journal of International Money and Finance, Elsevier, vol. 26(1), pages 86-103, February.
    14. Qian, Hang, 2013. "Vector Autoregression with Mixed Frequency Data," MPRA Paper 47856, University Library of Munich, Germany.
    15. Hafner, Christian M., 2008. "Temporal aggregation of multivariate GARCH processes," Journal of Econometrics, Elsevier, vol. 142(1), pages 467-483, January.
    16. Chambers, MJ & McCrorie, JR & Thornton, MA, 2017. "Continuous Time Modelling Based on an Exact Discrete Time Representation," Economics Discussion Papers 20497, University of Essex, Department of Economics.
    17. Moonsoo Park & Yanhong Jin & Alan Love, 2011. "Dynamic and contemporaneous causality in a supply chain: an application of the US beef industry," Applied Economics, Taylor & Francis Journals, vol. 43(30), pages 4785-4801.
    18. Du, Yingxin & Ju, Jiandong & Ramirez, Carlos D. & Yao, Xi, 2017. "Bilateral trade and shocks in political relations: Evidence from China and some of its major trading partners, 1990–2013," Journal of International Economics, Elsevier, vol. 108(C), pages 211-225.
    19. Helmut Lütkepohl, 2010. "Forecasting Aggregated Time Series Variables: A Survey," OECD Journal: Journal of Business Cycle Measurement and Analysis, OECD Publishing, Centre for International Research on Economic Tendency Surveys, vol. 2010(2), pages 1-26.
    20. Bartsch, Zachary, 2019. "Economic policy uncertainty and dollar-pound exchange rate return volatility," Journal of International Money and Finance, Elsevier, vol. 98(C), pages 1-1.
    21. Xinshuai Dong & Haoyue Dai & Yewen Fan & Songyao Jin & Sathyamoorthy Rajendran & Kun Zhang, 2023. "On the Three Demons in Causality in Finance: Time Resolution, Nonstationarity, and Latent Factors," Papers 2401.05414, arXiv.org, revised Jan 2024.
    22. Ghysels, Eric, 2016. "Macroeconomics and the reality of mixed frequency data," Journal of Econometrics, Elsevier, vol. 193(2), pages 294-314.
    23. Grosche, Stephanie, 2012. "Limitations of Granger Causality Analysis to assess the price effects from the financialization of agricultural commodity markets under bounded rationality," Discussion Papers 121868, University of Bonn, Institute for Food and Resource Economics.
    24. McCrorie, J.R. & Chambers, M.J., 2004. "Granger Causality and the Sampling of Economic Processes," Other publications TiSEM 02e79e30-1761-4800-8824-7, Tilburg University, School of Economics and Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:23:y:2002:i:6:p:651-665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.