IDEAS home Printed from https://ideas.repec.org/p/cte/wsrepe/6202.html
   My bibliography  Save this paper

Nonlinear time series models: consistency and asymptotic normality of nls under new conditions

Author

Listed:
  • Mira, Santiago

Abstract

In this paper we study the consistency and asymptotic normality properties of nonlinear least squares (NLS) under a set of assumptions that are not difficult to verify. The statistical literature on estimation of nonlinear models by NLS rely on abstract theoretical conditions. See for example the books of Tong(1990), and Granger and Terasvirta(1993). There are alternative statistical frameworks but all of them depend on high level (very technical) assumptions that are difficult and tedious to verify, see for example Gallant and White(1988) and Wooldridge(1994). In this paper we show that for a general class of nonlinear dynamic regression models, there are explicit and easy to check conditions that satisfy the general framework of Gallant and White(1988). We show the usefulness of our assumptions with some examples from the class of Smooth Transition Autoregressive (STAR) models.

Suggested Citation

  • Mira, Santiago, 1995. "Nonlinear time series models: consistency and asymptotic normality of nls under new conditions," DES - Working Papers. Statistics and Econometrics. WS 6202, Universidad Carlos III de Madrid. Departamento de Estadística.
  • Handle: RePEc:cte:wsrepe:6202
    as

    Download full text from publisher

    File URL: https://e-archivo.uc3m.es/rest/api/core/bitstreams/3d688484-f67f-4f44-8b80-581762877e1d/content
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Álvaro Escribano & Oscar Jordá, 2001. "Testing nonlinearity: Decision rules for selecting between logistic and exponential STAR models," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 193-209.
    2. H.J. Bierens, 1981. "Robust Methods and Asymptotic Theory in Nonlinear Econometrics," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 35(3), pages 173-173, September.
    3. Terasvirta, T & Anderson, H M, 1992. "Characterizing Nonlinearities in Business Cycles Using Smooth Transition Autoregressive Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 119-136, Suppl. De.
    4. Rothman, Philip, 1991. "Further evidence on the asymmetric behavior of unemployment rates over the business cycle," Journal of Macroeconomics, Elsevier, vol. 13(2), pages 291-298.
    5. M. B. Priestley, 1980. "State‐Dependent Models: A General Approach To Non‐Linear Time Series Analysis," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 47-71, January.
    6. Donald W. K. Andrews & C. John McDermott, 1995. "Nonlinear Econometric Models with Deterministically Trending Variables," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 62(3), pages 343-360.
    7. Burgess, Simon M. & Pfann, Gerard A., 1993. "Asymmetric and time-varying error-correction: an application to labour demand in the UK," DES - Working Papers. Statistics and Econometrics. WS 3681, Universidad Carlos III de Madrid. Departamento de Estadística.
    8. Granger, Clive W. J. & Terasvirta, Timo, 1993. "Modelling Non-Linear Economic Relationships," OUP Catalogue, Oxford University Press, number 9780198773207.
    9. Neftci, Salih N, 1984. "Are Economic Time Series Asymmetric over the Business Cycle?," Journal of Political Economy, University of Chicago Press, vol. 92(2), pages 307-328, April.
    10. Granger, Clive W J, 1995. "Modelling Nonlinear Relationships between Extended-Memory Variables," Econometrica, Econometric Society, vol. 63(2), pages 265-279, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marcelo C. Medeiros & Alvaro Veiga, 2003. "Diagnostic Checking in a Flexible Nonlinear Time Series Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(4), pages 461-482, July.
    2. Mira, Santiago, 1996. "Nonlinear cointegration and nonlinear error correction," DES - Working Papers. Statistics and Econometrics. WS 4546, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Hillebrand Eric & Medeiros Marcelo C. & Xu Junyue, 2013. "Asymptotic Theory for Regressions with Smoothly Changing Parameters," Journal of Time Series Econometrics, De Gruyter, vol. 5(2), pages 133-162, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dijk, Dick van & Franses, Philip Hans, 1999. "Modeling Multiple Regimes in the Business Cycle," Macroeconomic Dynamics, Cambridge University Press, vol. 3(3), pages 311-340, September.
    2. Liu, Yamei, 2000. "Overfitting and forecasting: linear versus non-linear time series models," ISU General Staff Papers 2000010108000014914, Iowa State University, Department of Economics.
    3. Álvaro Escribano & Oscar Jordá, 2001. "Testing nonlinearity: Decision rules for selecting between logistic and exponential STAR models," Spanish Economic Review, Springer;Spanish Economic Association, vol. 3(3), pages 193-209.
    4. Bec, Frédérique & Bouabdallah, Othman & Ferrara, Laurent, 2014. "The way out of recessions: A forecasting analysis for some Euro area countries," International Journal of Forecasting, Elsevier, vol. 30(3), pages 539-549.
    5. Alain Maurin & Sébastien Mathouraparsad & Roland Craigwell, 2011. "Unemployment hysteresis in the English-speaking Caribbean: evidence from non-linear models," Post-Print hal-04014790, HAL.
    6. LeBaron, Blake, 2003. "Non-Linear Time Series Models in Empirical Finance,: Philip Hans Franses and Dick van Dijk, Cambridge University Press, Cambridge, 2000, 296 pp., Paperback, ISBN 0-521-77965-0, $33, [UK pound]22.95, [," International Journal of Forecasting, Elsevier, vol. 19(4), pages 751-752.
    7. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    8. Peat, Maurice & Stevenson, Max, 1996. "Asymmetry in the business cycle: Evidence from the Australian labour market," Journal of Economic Behavior & Organization, Elsevier, vol. 30(3), pages 353-368, September.
    9. Allan D. Brunner, 1997. "On The Dynamic Properties Of Asymmetric Models Of Real GNP," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 321-352, May.
    10. Corradi, Valentina & Swanson, Norman R. & White, Halbert, 2000. "Testing for stationarity-ergodicity and for comovements between nonlinear discrete time Markov processes," Journal of Econometrics, Elsevier, vol. 96(1), pages 39-73, May.
    11. Clements, Michael P & Krolzig, Hans-Martin, 2003. "Business Cycle Asymmetries: Characterization and Testing Based on Markov-Switching Autoregressions," Journal of Business & Economic Statistics, American Statistical Association, vol. 21(1), pages 196-211, January.

    More about this item

    Keywords

    Nonlinear Dynamic Regression Models;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cte:wsrepe:6202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ana Poveda (email available below). General contact details of provider: http://portal.uc3m.es/portal/page/portal/dpto_estadistica .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.