IDEAS home Printed from https://ideas.repec.org/p/fip/fedcwp/1803.html
   My bibliography  Save this paper

Assessing International Commonality in Macroeconomic Uncertainty and Its Effects

Author

Listed:
  • Andrea Carriero
  • Todd E. Clark
  • Massimiliano Marcellino

Abstract

This paper uses a large vector autoregression (VAR) to measure international macroeconomic uncertainty and its effects on major economies, using two datasets, one with GDP growth rates for 19 industrialized countries and the other with a larger set of macroeconomic indicators for the U.S., euro area, and U.K. Using basic factor model diagnostics, we first provide evidence of significant commonality in international macroeconomic volatility, with one common factor accounting for strong comovement across economies and variables. We then turn to measuring uncertainty and its effects with a large VAR in which the error volatilities evolve over time according to a factor structure. The volatility of each variable in the system reflects time-varying common (global) components and idiosyncratic components. In this model, global uncertainty is allowed to contemporaneously affect the macroeconomies of the included nations?both the levels and volatilities of the included variables. In this setup, uncertainty and its effects are estimated in a single step within the same model. Our estimates yield new measures of international macroeconomic uncertainty, and indicate that uncertainty shocks (surprise increases) lower GDP and many of its components, adversely affect labor market conditions, lower stock prices, and in some economies lead to an easing of monetary policy.

Suggested Citation

  • Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2018. "Assessing International Commonality in Macroeconomic Uncertainty and Its Effects," Working Papers (Old Series) 1803, Federal Reserve Bank of Cleveland.
  • Handle: RePEc:fip:fedcwp:1803
    DOI: 10.26509/frbc-wp-201803
    as

    Download full text from publisher

    File URL: https://doi.org/10.26509/frbc-wp-201803
    File Function: Full text
    Download Restriction: no

    File URL: https://libkey.io/10.26509/frbc-wp-201803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barbara Rossi & Tatevik Sekhposyan & Matthieu Soupre, 2016. "Understanding the sources of macroeconomic uncertainty," Economics Working Papers 1531, Department of Economics and Business, Universitat Pompeu Fabra, revised Dec 2018.
    2. Hamilton, James D., 2003. "What is an oil shock?," Journal of Econometrics, Elsevier, vol. 113(2), pages 363-398, April.
    3. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International Transmission of Macroeconomic Uncertainty in Small Open Economies: An Empirical Approach," Working Papers No 12/2018, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    4. J. B. Taylor & Harald Uhlig (ed.), 2016. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 2, number 2.
    5. Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
    6. Coibion, Olivier & Gorodnichenko, Yuriy & Kueng, Lorenz & Silvia, John, 2017. "Innocent Bystanders? Monetary policy and inequality," Journal of Monetary Economics, Elsevier, vol. 88(C), pages 70-89.
    7. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    8. Lutz Kilian, 2008. "Exogenous Oil Supply Shocks: How Big Are They and How Much Do They Matter for the U.S. Economy?," The Review of Economics and Statistics, MIT Press, vol. 90(2), pages 216-240, May.
    9. Barbara Rossi & Tatevik Sekhposyan, 2017. "Macroeconomic uncertainty indices for the Euro Area and its individual member countries," Empirical Economics, Springer, vol. 53(1), pages 41-62, August.
    10. Jamie L. Cross & Chenghan Hou & Aubrey Poon, 2018. "International transmissions of aggregate macroeconomic uncertainty in small open economies: An empirical approach," CAMA Working Papers 2018-16, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    11. Jesus Crespo Cuaresma & Florian Huber & Luca Onorante, 2017. "The macroeconomic effects of international uncertainty shocks," Department of Economics Working Papers wuwp245, Vienna University of Economics and Business, Department of Economics.
    12. James H. Stock & Mark W. Watson, 2012. "Disentangling the Channels of the 2007-2009 Recession," NBER Working Papers 18094, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stock, J.H. & Watson, M.W., 2016. "Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 415-525, Elsevier.
    2. Ramey, V.A., 2016. "Macroeconomic Shocks and Their Propagation," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 71-162, Elsevier.
    3. Gupta, Rangan & Ma, Jun & Risse, Marian & Wohar, Mark E., 2018. "Common business cycles and volatilities in US states and MSAs: The role of economic uncertainty," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 317-337.
    4. Ewing, Bradley T. & Kang, Wensheng & Ratti, Ronald A., 2018. "The dynamic effects of oil supply shocks on the US stock market returns of upstream oil and gas companies," Energy Economics, Elsevier, vol. 72(C), pages 505-516.
    5. Montiel Olea, José L. & Stock, James H. & Watson, Mark W., 2021. "Inference in Structural Vector Autoregressions identified with an external instrument," Journal of Econometrics, Elsevier, vol. 225(1), pages 74-87.
    6. Vincent Brémond & Emmanuel Hache & Tovonony Razafindrabe, 2016. "The Oil Price and Exchange Rate Relationship Revisited: A time-varying VAR parameter approach," European Journal of Comparative Economics, Cattaneo University (LIUC), vol. 13(1), pages 97-131, June.
    7. Samuel F. Onipede & Nafiu A. Bashir & Jamaladeen Abubakar, 2023. "Small open economies and external shocks: an application of Bayesian global vector autoregression model," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1673-1699, April.
    8. Caldara, Dario & Cavallo, Michele & Iacoviello, Matteo, 2019. "Oil price elasticities and oil price fluctuations," Journal of Monetary Economics, Elsevier, vol. 103(C), pages 1-20.
    9. Ricardo Lagos & Shengxing Zhang, 2020. "Turnover Liquidity and the Transmission of Monetary Policy," American Economic Review, American Economic Association, vol. 110(6), pages 1635-1672, June.
    10. Robin Braun & Ralf Brüggemann, 2017. "Identification of SVAR Models by Combining Sign Restrictions With External Instruments," Working Paper Series of the Department of Economics, University of Konstanz 2017-07, Department of Economics, University of Konstanz.
    11. George Kapetanios & Massimiliano Marcellino & Fabrizio Venditti, 2019. "Large time‐varying parameter VARs: A nonparametric approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(7), pages 1027-1049, November.
    12. Michael Ryan, 2020. "A Narrative Approach to Creating Instruments with Unstructured and Voluminous Text: An Application to Policy Uncertainty," Working Papers in Economics 20/10, University of Waikato.
    13. Haque, Qazi & Groshenny, Nicolas & Weder, Mark, 2021. "Do we really know that U.S. monetary policy was destabilizing in the 1970s?," European Economic Review, Elsevier, vol. 131(C).
    14. Blaise Gnimassoun & Marc Joëts & Tovonony Razafindrabe, 2016. "On the link between current account and oil price fluctuations in diversified economies: The case of Canada," Working Papers hal-04141574, HAL.
    15. Gong, Xu & Chen, Liqiang & Lin, Boqiang, 2020. "Analyzing dynamic impacts of different oil shocks on oil price," Energy, Elsevier, vol. 198(C).
    16. Graziano Moramarco, 2022. "Measuring Global Macroeconomic Uncertainty and Cross-Country Uncertainty Spillovers," Econometrics, MDPI, vol. 11(1), pages 1-29, December.
    17. Marta Banbura & Andries van Vlodrop, 2018. "Forecasting with Bayesian Vector Autoregressions with Time Variation in the Mean," Tinbergen Institute Discussion Papers 18-025/IV, Tinbergen Institute.
    18. Christiane Baumeister & Gert Peersman, 2013. "Time-Varying Effects of Oil Supply Shocks on the US Economy," American Economic Journal: Macroeconomics, American Economic Association, vol. 5(4), pages 1-28, October.
    19. Olivier Coibion & Yuriy Gorodnichenko & Mauricio Ulate, 2018. "The Cyclical Sensitivity in Estimates of Potential Output," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 49(2 (Fall)), pages 343-441.
    20. repec:hal:spmain:info:hdl:2441/sb7ftvod18eb8hqptthmmeddt is not listed on IDEAS
    21. Michele Piffer & Maximilian Podstawski, 2018. "Identifying Uncertainty Shocks Using the Price of Gold," Economic Journal, Royal Economic Society, vol. 128(616), pages 3266-3284, December.

    More about this item

    Keywords

    Business cycle uncertainty; stochastic volatility; large datasets;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • F44 - International Economics - - Macroeconomic Aspects of International Trade and Finance - - - International Business Cycles

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedcwp:1803. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: 4D Library (email available below). General contact details of provider: https://edirc.repec.org/data/frbclus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.