IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i3d10.1007_s10957-024-02547-7.html
   My bibliography  Save this article

Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications

Author

Listed:
  • Rajeeva Laxman Karandikar

    (Chennai Mathematical Institute)

  • Mathukumalli Vidyasagar

    (Indian Institute of Technology Hyderabad)

Abstract

In this paper, we study the convergence properties of the Stochastic Gradient Descent (SGD) method for finding a stationary point of a given objective function $$J(\cdot )$$ J ( · ) . The objective function is not required to be convex. Rather, our results apply to a class of “invex” functions, which have the property that every stationary point is also a global minimizer. First, it is assumed that $$J(\cdot )$$ J ( · ) satisfies a property that is slightly weaker than the Kurdyka–Łojasiewicz (KL) condition, denoted here as (KL’). It is shown that the iterations $$J({\varvec{\theta }}_t)$$ J ( θ t ) converge almost surely to the global minimum of $$J(\cdot )$$ J ( · ) . Next, the hypothesis on $$J(\cdot )$$ J ( · ) is strengthened from (KL’) to the Polyak–Łojasiewicz (PL) condition. With this stronger hypothesis, we derive estimates on the rate of convergence of $$J({\varvec{\theta }}_t)$$ J ( θ t ) to its limit. Using these results, we show that for functions satisfying the PL property, the convergence rate of both the objective function and the norm of the gradient with SGD is the same as the best-possible rate for convex functions. While some results along these lines have been published in the past, our contributions contain two distinct improvements. First, the assumptions on the stochastic gradient are more general than elsewhere, and second, our convergence is almost sure, and not in expectation. We also study SGD when only function evaluations are permitted. In this setting, we determine the “optimal” increments or the size of the perturbations. Using the same set of ideas, we establish the global convergence of the Stochastic Approximation (SA) algorithm under more general assumptions on the measurement error, compared to the existing literature. We also derive bounds on the rate of convergence of the SA algorithm under appropriate assumptions.

Suggested Citation

  • Rajeeva Laxman Karandikar & Mathukumalli Vidyasagar, 2024. "Convergence Rates for Stochastic Approximation: Biased Noise with Unbounded Variance, and Applications," Journal of Optimization Theory and Applications, Springer, vol. 203(3), pages 2412-2450, December.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02547-7
    DOI: 10.1007/s10957-024-02547-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02547-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02547-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    2. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    3. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    4. Geovani Nunes Grapiglia, 2023. "Quadratic regularization methods with finite-difference gradient approximations," Computational Optimization and Applications, Springer, vol. 85(3), pages 683-703, July.
    5. Tianyu Wang & Yasong Feng, 2024. "Convergence Rates of Zeroth Order Gradient Descent for Łojasiewicz Functions," INFORMS Journal on Computing, INFORMS, vol. 36(6), pages 1611-1633, December.
    6. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    7. Nikita Kornilov & Alexander Gasnikov & Pavel Dvurechensky & Darina Dvinskikh, 2023. "Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact," Computational Management Science, Springer, vol. 20(1), pages 1-43, December.
    8. David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
    9. Marco Rando & Cesare Molinari & Silvia Villa & Lorenzo Rosasco, 2024. "Stochastic zeroth order descent with structured directions," Computational Optimization and Applications, Springer, vol. 89(3), pages 691-727, December.
    10. Vyacheslav Kungurtsev & Francesco Rinaldi & Damiano Zeffiro, 2024. "Retraction-Based Direct Search Methods for Derivative Free Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1710-1735, November.
    11. Marco Boresta & Tommaso Colombo & Alberto Santis & Stefano Lucidi, 2022. "A Mixed Finite Differences Scheme for Gradient Approximation," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 1-24, July.
    12. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    13. Michael R. Metel & Akiko Takeda, 2022. "Perturbed Iterate SGD for Lipschitz Continuous Loss Functions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 504-547, November.
    14. Katya Scheinberg, 2022. "Finite Difference Gradient Approximation: To Randomize or Not?," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2384-2388, September.
    15. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.
    16. Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    17. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    18. Jun Xie & Qingyun Yu & Chi Cao, 2018. "A Distributed Randomized Gradient-Free Algorithm for the Non-Convex Economic Dispatch Problem," Energies, MDPI, vol. 11(1), pages 1-15, January.
    19. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:3:d:10.1007_s10957-024-02547-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.