IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v85y2023i3d10.1007_s10589-022-00373-z.html
   My bibliography  Save this article

Quadratic regularization methods with finite-difference gradient approximations

Author

Listed:
  • Geovani Nunes Grapiglia

    (Université catholique de Louvain, ICTEAM/INMA)

Abstract

This paper presents two quadratic regularization methods with finite-difference gradient approximations for smooth unconstrained optimization problems. One method is based on forward finite-difference gradients, while the other is based on central finite-difference gradients. In both methods, the accuracy of the gradient approximations and the regularization parameter in the quadratic models are jointly adjusted using a nonmonotone acceptance condition for the trial points. When the objective function is bounded from below and has Lipschitz continuous gradient, it is shown that the method based on forward finite-difference gradients needs at most $${\mathcal{O}}\left( n\epsilon ^{-2}\right) $$ O n ϵ - 2 function evaluations to generate a $$\epsilon $$ ϵ -approximate stationary point, where n is the problem dimension. Under the additional assumption that the Hessian of the objective is Lipschitz continuous, an evaluation complexity bound of the same order is proved for the method based on central finite-difference gradients. Numerical results are also presented. They confirm the theoretical findings and illustrate the relative efficiency of the proposed methods.

Suggested Citation

  • Geovani Nunes Grapiglia, 2023. "Quadratic regularization methods with finite-difference gradient approximations," Computational Optimization and Applications, Springer, vol. 85(3), pages 683-703, July.
  • Handle: RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-022-00373-z
    DOI: 10.1007/s10589-022-00373-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00373-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00373-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Geovani N. Grapiglia & Ekkehard W. Sachs, 2017. "On the worst-case evaluation complexity of non-monotone line search algorithms," Computational Optimization and Applications, Springer, vol. 68(3), pages 555-577, December.
    2. Yurii NESTEROV & Vladimir SPOKOINY, 2017. "Random gradient-free minimization of convex functions," LIDAM Reprints CORE 2851, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghadimi, Saeed & Powell, Warren B., 2024. "Stochastic search for a parametric cost function approximation: Energy storage with rolling forecasts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 641-652.
    2. Filippozzi, Rafaela & Gonçalves, Douglas S. & Santos, Luiz-Rafael, 2023. "First-order methods for the convex hull membership problem," European Journal of Operational Research, Elsevier, vol. 306(1), pages 17-33.
    3. V. Kungurtsev & F. Rinaldi, 2021. "A zeroth order method for stochastic weakly convex optimization," Computational Optimization and Applications, Springer, vol. 80(3), pages 731-753, December.
    4. O. P. Ferreira & G. N. Grapiglia & E. M. Santos & J. C. O. Souza, 2023. "A subgradient method with non-monotone line search," Computational Optimization and Applications, Springer, vol. 84(2), pages 397-420, March.
    5. Nikita Kornilov & Alexander Gasnikov & Pavel Dvurechensky & Darina Dvinskikh, 2023. "Gradient-free methods for non-smooth convex stochastic optimization with heavy-tailed noise on convex compact," Computational Management Science, Springer, vol. 20(1), pages 1-43, December.
    6. Jean-Jacques Forneron, 2023. "Noisy, Non-Smooth, Non-Convex Estimation of Moment Condition Models," Papers 2301.07196, arXiv.org, revised Feb 2023.
    7. P. B. Assunção & O. P. Ferreira & L. F. Prudente, 2021. "Conditional gradient method for multiobjective optimization," Computational Optimization and Applications, Springer, vol. 78(3), pages 741-768, April.
    8. David Kozak & Stephen Becker & Alireza Doostan & Luis Tenorio, 2021. "A stochastic subspace approach to gradient-free optimization in high dimensions," Computational Optimization and Applications, Springer, vol. 79(2), pages 339-368, June.
    9. Vyacheslav Kungurtsev & Francesco Rinaldi & Damiano Zeffiro, 2024. "Retraction-Based Direct Search Methods for Derivative Free Riemannian Optimization," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1710-1735, November.
    10. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    11. Marco Boresta & Tommaso Colombo & Alberto Santis & Stefano Lucidi, 2022. "A Mixed Finite Differences Scheme for Gradient Approximation," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 1-24, July.
    12. Jun Xie & Chi Cao, 2017. "Non-Convex Economic Dispatch of a Virtual Power Plant via a Distributed Randomized Gradient-Free Algorithm," Energies, MDPI, vol. 10(7), pages 1-12, July.
    13. Michael R. Metel & Akiko Takeda, 2022. "Perturbed Iterate SGD for Lipschitz Continuous Loss Functions," Journal of Optimization Theory and Applications, Springer, vol. 195(2), pages 504-547, November.
    14. Katya Scheinberg, 2022. "Finite Difference Gradient Approximation: To Randomize or Not?," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2384-2388, September.
    15. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.
    16. Ghaderi, Susan & Ahookhosh, Masoud & Arany, Adam & Skupin, Alexander & Patrinos, Panagiotis & Moreau, Yves, 2024. "Smoothing unadjusted Langevin algorithms for nonsmooth composite potential functions," Applied Mathematics and Computation, Elsevier, vol. 464(C).
    17. Dvurechensky, Pavel & Gorbunov, Eduard & Gasnikov, Alexander, 2021. "An accelerated directional derivative method for smooth stochastic convex optimization," European Journal of Operational Research, Elsevier, vol. 290(2), pages 601-621.
    18. Jun Xie & Qingyun Yu & Chi Cao, 2018. "A Distributed Randomized Gradient-Free Algorithm for the Non-Convex Economic Dispatch Problem," Energies, MDPI, vol. 11(1), pages 1-15, January.
    19. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
    20. O. P. Ferreira & M. Lemes & L. F. Prudente, 2022. "On the inexact scaled gradient projection method," Computational Optimization and Applications, Springer, vol. 81(1), pages 91-125, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:85:y:2023:i:3:d:10.1007_s10589-022-00373-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.