IDEAS home Printed from https://ideas.repec.org/p/com/wpaper/014.html
   My bibliography  Save this paper

Validating Structural Credit Portfolio Models

Author

Listed:
  • Michael Kalkbrener
  • Akwum Onwunta

Abstract

No abstract is available for this item.

Suggested Citation

  • Michael Kalkbrener & Akwum Onwunta, 2009. "Validating Structural Credit Portfolio Models," Working Papers 014, COMISEF.
  • Handle: RePEc:com:wpaper:014
    as

    Download full text from publisher

    File URL: http://comisef.eu/files/wps014.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    2. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    3. Reinaldo B. Arellano‐Valle & Adelchi Azzalini, 2006. "On the Unification of Families of Skew‐normal Distributions," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 33(3), pages 561-574, September.
    4. Koopman, Siem Jan & Lucas, André, 2008. "A Non-Gaussian Panel Time Series Model for Estimating and Decomposing Default Risk," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 510-525.
    5. Rosch, Daniel, 2005. "An empirical comparison of default risk forecasts from alternative credit rating philosophies," International Journal of Forecasting, Elsevier, vol. 21(1), pages 37-51.
    6. Cornaglia, Anna & Morone, Marco, 2009. "Rating philosophy and dynamic properties of internal rating systems: A general framework and an application to backtesting," MPRA Paper 14711, University Library of Munich, Germany.
    7. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christoph Wunderer, 2017. "Asset correlation estimation for inhomogeneous exposure pools," Papers 1701.02028, arXiv.org, revised Sep 2019.
    2. Perederiy, Volodymyr, 2015. "Endogenous derivation and forecast of lifetime PDs," MPRA Paper 65679, University Library of Munich, Germany.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McNeil, Alexander J. & Wendin, Jonathan P., 2007. "Bayesian inference for generalized linear mixed models of portfolio credit risk," Journal of Empirical Finance, Elsevier, vol. 14(2), pages 131-149, March.
    2. Konrad Banachewicz & André Lucas, 2008. "Quantile forecasting for credit risk management using possibly misspecified hidden Markov models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 566-586.
    3. Wang, Fa, 2017. "Maximum likelihood estimation and inference for high dimensional nonlinear factor models with application to factor-augmented regressions," MPRA Paper 93484, University Library of Munich, Germany, revised 19 May 2019.
    4. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    5. Nikola A. Tarashev & Haibin Zhu, 2006. "The pricing of portfolio credit risk," BIS Working Papers 214, Bank for International Settlements.
    6. Wang, Fa, 2022. "Maximum likelihood estimation and inference for high dimensional generalized factor models with application to factor-augmented regressions," Journal of Econometrics, Elsevier, vol. 229(1), pages 180-200.
    7. Koopman, Siem Jan & Lucas, Andre & Monteiro, Andre, 2008. "The multi-state latent factor intensity model for credit rating transitions," Journal of Econometrics, Elsevier, vol. 142(1), pages 399-424, January.
    8. Nguyen, Ha, 2023. "An empirical application of Particle Markov Chain Monte Carlo to frailty correlated default models," Journal of Empirical Finance, Elsevier, vol. 72(C), pages 103-121.
    9. Zhu, Haibin & Tarashev, Nikola A., 2008. "The pricing of correlated default risk: evidence from the credit derivatives market," Discussion Paper Series 2: Banking and Financial Studies 2008,09, Deutsche Bundesbank.
    10. Huang, Xin & Zhou, Hao & Zhu, Haibin, 2009. "A framework for assessing the systemic risk of major financial institutions," Journal of Banking & Finance, Elsevier, vol. 33(11), pages 2036-2049, November.
    11. Blümke, Oliver, 2018. "On the cyclicality of default rates of banks: A comparative study of the asset correlation and diversification effects," Journal of Empirical Finance, Elsevier, vol. 47(C), pages 65-77.
    12. Schwaab, Bernd & Koopman, Siem Jan & Lucas, André, 2011. "Systemic risk diagnostics: coincident indicators and early warning signals," Working Paper Series 1327, European Central Bank.
    13. Koopman, Siem Jan & Lucas, André & Schwaab, Bernd, 2011. "Modeling frailty-correlated defaults using many macroeconomic covariates," Journal of Econometrics, Elsevier, vol. 162(2), pages 312-325, June.
    14. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    15. Abel Elizalde, 2006. "Credit Risk Models IV: Understanding and Pricing CDOs," Working Papers wp2006_0608, CEMFI.
    16. Bernd Schwaab & Siem Jan Koopman & André Lucas, 2017. "Global Credit Risk: World, Country and Industry Factors," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(2), pages 296-317, March.
    17. Carlos Castro, 2012. "Confidence sets for asset correlations in portfolio credit risk," Revista de Economía del Rosario, Universidad del Rosario, June.
    18. J. Crook & T. Bellotti, 2012. "Asset correlations for credit card defaults," Applied Financial Economics, Taylor & Francis Journals, vol. 22(2), pages 87-95, January.
    19. Konrad Banachewicz & André Lucas & Aad van der Vaart, 2008. "Modelling Portfolio Defaults Using Hidden Markov Models with Covariates," Econometrics Journal, Royal Economic Society, vol. 11(1), pages 155-171, March.
    20. Bernd Schwaab & Andre Lucas & Siem Jan Koopman, 2010. "Systemic Risk Diagnostics," Tinbergen Institute Discussion Papers 10-104/2/DSF 2, Tinbergen Institute, revised 29 Nov 2010.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:com:wpaper:014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anil Khuman (email available below). General contact details of provider: http://www.comisef.eu .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.