IDEAS home Printed from https://ideas.repec.org/p/col/000089/021340.html
   My bibliography  Save this paper

El Potencial Impacto del Aprendizaje de Máquinas en el Diseño de las Políticas Públicas en Colombia: Una década de experiencias

Author

Listed:
  • Riascos Villegas, Alvaro

    (Universidad de los Andes)

Abstract

Este texto recopila diez años de experiencias en el desarrollo de modelos de aprendizaje de máquinas para el sector público colombiano. Las principales aplicaciones se enfocan en la salud pública y la seguridad ciudadana. En el primer caso, se muestra cómo mejorar considerablemente la fórmula de ajuste de riesgo de la Unidad de Pago por Capitación (UPC) y cómo construir un modelo de decisión para la prevención de hospitalizaciones innecesarias, como consecuencia de visitas médicas domiciliarias costo-efectivas. En el segundo caso, se identifica el efecto causal de la presencia de la policía en un cuadrante de Bogotá y su incidencia en el crimen. Para ello, se estiman las elasticidades de la presencia policial con respecto al crimen, las elasticidades cruzadas (efectos indirectos sobre otros cuadrantes) y el impacto de la reasignación óptima de la policía en la ciudad. Además, se describe una metodología para descubrir la verdadera tasa de criminalidad en Bogotá y se estima el subreporte de estos eventos. Por último, se presenta una breve reflexión sobre las dificultades que enfrentan los formuladores de política pública para implementar estas soluciones.

Suggested Citation

  • Riascos Villegas, Alvaro, 2025. "El Potencial Impacto del Aprendizaje de Máquinas en el Diseño de las Políticas Públicas en Colombia: Una década de experiencias," Documentos CEDE 21340, Universidad de los Andes, Facultad de Economía, CEDE.
  • Handle: RePEc:col:000089:021340
    as

    Download full text from publisher

    File URL: https://repositorio.uniandes.edu.co/bitstreams/handle/1992/76101/dcede2025-09.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohsen Bayati & Mark Braverman & Michael Gillam & Karen M Mack & George Ruiz & Mark S Smith & Eric Horvitz, 2014. "Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shan Huang & Michael Allan Ribers & Hannes Ullrich, 2021. "The Value of Data for Prediction Policy Problems: Evidence from Antibiotic Prescribing," Discussion Papers of DIW Berlin 1939, DIW Berlin, German Institute for Economic Research.
    2. Michael Allan Ribers & Hannes Ullrich, 2024. "Complementarities between algorithmic and human decision-making: The case of antibiotic prescribing," Quantitative Marketing and Economics (QME), Springer, vol. 22(4), pages 445-483, December.
    3. Onder, O. & Cook, W. & Kristal, M., 2022. "Does quality help the financial viability of hospitals? A data envelopment analysis approach," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    4. Álvaro Riascos & Natalia Serna & Marcela Granados & Fernando Rosso & Ramiro Guerrero, 2016. "Predicting readmissions, mortality, and infections in the ICU using Machine Learning Techniques," Documentos de Trabajo 15074, Quantil.
    5. Tinglong Dai & Kelly Gleason & Chao‐Wei Hwang & Patricia Davidson, 2021. "Heart analytics: Analytical modeling of cardiovascular care," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 30-43, February.
    6. Dennis J. Zhang & Itai Gurvich & Jan A. Van Mieghem & Eric Park & Robert S. Young & Mark V. Williams, 2016. "Hospital Readmissions Reduction Program: An Economic and Operational Analysis," Management Science, INFORMS, vol. 62(11), pages 3351-3371, November.
    7. Kuang Xu & Carri W. Chan, 2016. "Using Future Information to Reduce Waiting Times in the Emergency Department via Diversion," Manufacturing & Service Operations Management, INFORMS, vol. 18(3), pages 314-331, July.
    8. Damien Échevin & Qing Li & Marc-André Morin, 2017. "Hospital Readmission is Highly Predictable from Deep Learning," Cahiers de recherche 1705, Chaire de recherche Industrielle Alliance sur les enjeux économiques des changements démographiques.
    9. Zhao, Heng & Liu, Zixian & Li, Mei & Liang, Lijun, 2022. "Optimal monitoring policies for chronic diseases under healthcare warranty," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
    10. Michael Allan Ribers & Hannes Ullrich, 2023. "Machine learning and physician prescribing: a path to reduced antibiotic use," Berlin School of Economics Discussion Papers 0019, Berlin School of Economics.
    11. Hannes Ullrich & Michael Allan Ribers, 2023. "Machine predictions and human decisions with variation in payoffs and skill: the case of antibiotic prescribing," Berlin School of Economics Discussion Papers 0027, Berlin School of Economics.
    12. Juan Manuel Ponce Romero & Stephen H. Hallett & Simon Jude, 2017. "Leveraging Big Data Tools and Technologies: Addressing the Challenges of the Water Quality Sector," Sustainability, MDPI, vol. 9(12), pages 1-19, November.
    13. Hamsa Bastani & Mohsen Bayati, 2020. "Online Decision Making with High-Dimensional Covariates," Operations Research, INFORMS, vol. 68(1), pages 276-294, January.

    More about this item

    Keywords

    Aprendizaje de máquinas; inteligencia artificial; ajuste de riesgo; crimen; política publicas;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • I18 - Health, Education, and Welfare - - Health - - - Government Policy; Regulation; Public Health
    • K42 - Law and Economics - - Legal Procedure, the Legal System, and Illegal Behavior - - - Illegal Behavior and the Enforcement of Law

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:col:000089:021340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Universidad De Los Andes-Cede (email available below). General contact details of provider: https://edirc.repec.org/data/ceandco.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.