IDEAS home Printed from https://ideas.repec.org/p/lvl/criacr/1705.html
   My bibliography  Save this paper

Hospital Readmission is Highly Predictable from Deep Learning

Author

Listed:
  • Damien Échevin
  • Qing Li
  • Marc-André Morin

Abstract

Hospital readmission is costly and existing models are often poor or moderate in predicting readmission. We sought to develop and test a method that can be applied generally by hospitals. Such a tool can help clinicians identify patients who are more likely to be readmitted, either at early stages of hospital stay or at hospital discharge. Relying on state-of-the art machine learning algorithms, we predict probability of 30-day readmission at hospital admission and at hospital discharge using administrative data on 1,633,099 hospital stays from Quebec between 1995 and 2012. We measure performance of the predictions with the area under receiver operating characteristic curve (AUC). Deep Learning produced excellent prediction of readmission province-wide, and Random Forest reached very similar level. The AUC for these two algorithms reached above 78% at hospital admission and above 87% at hospital discharge, and the diagnostic codes are among the most predictive variables. The ease of implementation of machine learning algorithms, together with objectively validated reliability, brings new possibilities for cost reduction in the health care system.

Suggested Citation

  • Damien Échevin & Qing Li & Marc-André Morin, 2017. "Hospital Readmission is Highly Predictable from Deep Learning," Cahiers de recherche 1705, Chaire de recherche Industrielle Alliance sur les enjeux économiques des changements démographiques.
  • Handle: RePEc:lvl:criacr:1705
    as

    Download full text from publisher

    File URL: https://www.cedia.ca/sites/cedia.ca/files/cahier_17_05_hospital_readmission_deep_learning.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohsen Bayati & Mark Braverman & Michael Gillam & Karen M Mack & George Ruiz & Mark S Smith & Eric Horvitz, 2014. "Data-Driven Decisions for Reducing Readmissions for Heart Failure: General Methodology and Case Study," PLOS ONE, Public Library of Science, vol. 9(10), pages 1-9, October.
    2. Hal R. Varian, 2014. "Big Data: New Tricks for Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 28(2), pages 3-28, Spring.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sophie-Charlotte Klose & Johannes Lederer, 2020. "A Pipeline for Variable Selection and False Discovery Rate Control With an Application in Labor Economics," Papers 2006.12296, arXiv.org, revised Jun 2020.
    2. Patrick Bajari & Victor Chernozhukov & Ali Hortaçsu & Junichi Suzuki, 2019. "The Impact of Big Data on Firm Performance: An Empirical Investigation," AEA Papers and Proceedings, American Economic Association, vol. 109, pages 33-37, May.
    3. Nathan, Max & Rosso, Anna, 2014. "Mapping information economy businesses with big data: findings from the UK," LSE Research Online Documents on Economics 60615, London School of Economics and Political Science, LSE Library.
    4. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    5. Nicodemo, Catia & Satorra, Albert, 2020. "Exploratory Data Analysis on Large Data Sets: The Example of Salary Variation in Spanish Social Security Data," IZA Discussion Papers 13459, Institute of Labor Economics (IZA).
    6. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    7. Arthur Charpentier & Emmanuel Flachaire & Antoine Ly, 2017. "Econom\'etrie et Machine Learning," Papers 1708.06992, arXiv.org, revised Mar 2018.
    8. Crespo, Cristian, 2020. "Two become one: improving the targeting of conditional cash transfers with a predictive model of school dropout," LSE Research Online Documents on Economics 123139, London School of Economics and Political Science, LSE Library.
    9. Lidia Ceriani & Sergio Olivieri & Marco Ranzani, 2023. "Housing, imputed rent, and household welfare," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 21(1), pages 131-168, March.
    10. Croux, Christophe & Jagtiani, Julapa & Korivi, Tarunsai & Vulanovic, Milos, 2020. "Important factors determining Fintech loan default: Evidence from a lendingclub consumer platform," Journal of Economic Behavior & Organization, Elsevier, vol. 173(C), pages 270-296.
    11. Leif Anders Thorsrud, 2016. "Nowcasting using news topics Big Data versus big bank," Working Papers No 6/2016, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    12. Matteo Iacopini & Carlo R.M.A. Santagiustina, 2021. "Filtering the intensity of public concern from social media count data with jumps," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1283-1302, October.
    13. Lopez Cordova,Jose Ernesto, 2020. "Digital Platforms and the Demand for International Tourism Services," Policy Research Working Paper Series 9147, The World Bank.
    14. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    15. Erik Heilmann & Janosch Henze & Heike Wetzel, 2021. "Machine learning in energy forecasts with an application to high frequency electricity consumption data," MAGKS Papers on Economics 202135, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    16. Jens Ludwig & Sendhil Mullainathan, 2021. "Fragile Algorithms and Fallible Decision-Makers: Lessons from the Justice System," Journal of Economic Perspectives, American Economic Association, vol. 35(4), pages 71-96, Fall.
    17. Katsuyuki Tanaka & Takuji Kinkyo & Shigeyuki Hamori, 2018. "Financial Hazard Map: Financial Vulnerability Predicted by a Random Forests Classification Model," Sustainability, MDPI, vol. 10(5), pages 1-18, May.
    18. Halko, Marja-Liisa & Lappalainen, Olli & Sääksvuori, Lauri, 2021. "Do non-choice data reveal economic preferences? Evidence from biometric data and compensation-scheme choice," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 87-104.
    19. Rama K. Malladi, 2024. "Benchmark Analysis of Machine Learning Methods to Forecast the U.S. Annual Inflation Rate During a High-Decile Inflation Period," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 335-375, July.
    20. Pierdzioch, Christian & Risse, Marian & Rohloff, Sebastian, 2016. "Are precious metals a hedge against exchange-rate movements? An empirical exploration using bayesian additive regression trees," The North American Journal of Economics and Finance, Elsevier, vol. 38(C), pages 27-38.

    More about this item

    Keywords

    Machine learning; Logistic regression; Risk of re-hospitalisation; Healthcare costs;
    All these keywords.

    JEL classification:

    • I10 - Health, Education, and Welfare - - Health - - - General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:lvl:criacr:1705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Manuel Paradis (email available below). General contact details of provider: https://edirc.repec.org/data/cediaca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.