IDEAS home Printed from https://ideas.repec.org/a/eee/iepoli/v47y2019icp27-37.html
   My bibliography  Save this article

AI meets labor market: Exploring the link between automation and skills

Author

Listed:
  • Colombo, Emilio
  • Mercorio, Fabio
  • Mezzanzanica, Mario

Abstract

This paper develops a set of innovative tools for labor market intelligence by applying machine learning techniques to web vacancies on the Italian labor market. Our approach allows to calculate, for each occupation, the different types of skills required by the market alongside a set of relevant variables such as region, sector, education and level of experience. We construct a taxonomy for skills and map it into the recently developed ESCO classification system. We subsequently develop measures of the relevance of soft and hard skills and we analyze their detailed composition. We apply the dataset constructed to the debate on computerization of work. We show that soft and digital skills are related to the probability of automation of a given occupation and we shed some light on the complementarity/substitutability of hard and soft skills.

Suggested Citation

  • Colombo, Emilio & Mercorio, Fabio & Mezzanzanica, Mario, 2019. "AI meets labor market: Exploring the link between automation and skills," Information Economics and Policy, Elsevier, vol. 47(C), pages 27-37.
  • Handle: RePEc:eee:iepoli:v:47:y:2019:i:c:p:27-37
    DOI: 10.1016/j.infoecopol.2019.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167624518301318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.infoecopol.2019.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Melanie Arntz & Terry Gregory & Ulrich Zierahn, 2016. "The Risk of Automation for Jobs in OECD Countries: A Comparative Analysis," OECD Social, Employment and Migration Working Papers 189, OECD Publishing.
    2. Robert C. Feenstra, 1998. "Integration of Trade and Disintegration of Production in the Global Economy," Journal of Economic Perspectives, American Economic Association, vol. 12(4), pages 31-50, Fall.
    3. Daron Acemoglu & Pascual Restrepo, 2017. "Robots and Jobs: Evidence from US Labor Markets," Boston University - Department of Economics - Working Papers Series dp-297, Boston University - Department of Economics.
    4. David H. Autor & Frank Levy & Richard J. Murnane, 2003. "The skill content of recent technological change: an empirical exploration," Proceedings, Federal Reserve Bank of San Francisco, issue Nov.
    5. Pietro Lovaglio & Mario Mezzanzanica, 2013. "Classification of longitudinal career paths," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(2), pages 989-1008, February.
    6. Rajan, Raghuram G & Zingales, Luigi, 1998. "Financial Dependence and Growth," American Economic Review, American Economic Association, vol. 88(3), pages 559-586, June.
    7. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation, and Work," NBER Chapters, in: The Economics of Artificial Intelligence: An Agenda, pages 197-236, National Bureau of Economic Research, Inc.
    8. Richard B. Freeman, 2006. "Is A Great Labor Shortage Coming? Replacement Demand in the Global Economy," NBER Working Papers 12541, National Bureau of Economic Research, Inc.
    9. James Bessen, 2018. "AI and Jobs: the role of demand," NBER Working Papers 24235, National Bureau of Economic Research, Inc.
    10. Frey, Carl Benedikt & Osborne, Michael A., 2017. "The future of employment: How susceptible are jobs to computerisation?," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 254-280.
    11. Maarten Goos & Alan Manning & Anna Salomons, 2014. "Explaining Job Polarization: Routine-Biased Technological Change and Offshoring," American Economic Review, American Economic Association, vol. 104(8), pages 2509-2526, August.
    12. David Card & John E. DiNardo, 2002. "Skill-Biased Technological Change and Rising Wage Inequality: Some Problems and Puzzles," Journal of Labor Economics, University of Chicago Press, vol. 20(4), pages 733-783, October.
    13. Kory Kroft & Devin G. Pope, 2014. "Does Online Search Crowd Out Traditional Search and Improve Matching Efficiency? Evidence from Craigslist," Journal of Labor Economics, University of Chicago Press, vol. 32(2), pages 259-303.
    14. Jagdish Bhagwati & Arvind Panagariya, 2004. "The Muddles over Outsourcing," Journal of Economic Perspectives, American Economic Association, vol. 18(4), pages 93-114, Fall.
    15. Daron Acemoglu & Pascual Restrepo, 2018. "Artificial Intelligence, Automation and Work," Boston University - Department of Economics - Working Papers Series dp-298, Boston University - Department of Economics.
    16. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    17. Daron Acemoglu & Pascual Restrepo, 2020. "Robots and Jobs: Evidence from US Labor Markets," Journal of Political Economy, University of Chicago Press, vol. 128(6), pages 2188-2244.
    18. Daron Acemoglu, 2002. "Technical Change, Inequality, and the Labor Market," Journal of Economic Literature, American Economic Association, vol. 40(1), pages 7-72, March.
    19. David H. Autor & Lawrence F. Katz & Alan B. Krueger, 1998. "Computing Inequality: Have Computers Changed the Labor Market?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1169-1213.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arendt, Lukasz & Gałecka-Burdziak, Ewa & Núñez, Fernando & Pater, Robert & Usabiaga, Carlos, 2023. "Skills requirements across task-content groups in Poland: What online job offers tell us," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    2. Papoutsoglou, Maria & Rigas, Emmanouil S. & Kapitsaki, Georgia M. & Angelis, Lefteris & Wachs, Johannes, 2022. "Online labour market analytics for the green economy: The case of electric vehicles," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    3. Brenčič, Vera, 2024. "Terms of use and network size: Evidence from online job boards and CV banks in the U.S," Information Economics and Policy, Elsevier, vol. 67(C).
    4. Emilio Colombo & Fabio Mercorio & Mario Mezzanzanica & Antonio Serino, 2024. "Towards the Terminator Economy: Assessing Job Exposure to AI through LLMs," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis2401, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
    5. Chaklader, Barnali & Gupta, Brij B. & Panigrahi, Prabin Kumar, 2023. "Analyzing the progress of FINTECH-companies and their integration with new technologies for innovation and entrepreneurship," Journal of Business Research, Elsevier, vol. 161(C).
    6. Piróg Danuta & Hibszer Adam, 2023. "Which Skills are the Most Prized? Analysing Monetary Value of Geographers’ Skills on the Labour Market in Six European Countries," Quaestiones Geographicae, Sciendo, vol. 42(4), pages 63-79, December.
    7. Marina Johnson & Rashmi Jain & Peggy Brennan-Tonetta & Ethne Swartz & Deborah Silver & Jessica Paolini & Stanislav Mamonov & Chelsey Hill, 2021. "Impact of Big Data and Artificial Intelligence on Industry: Developing a Workforce Roadmap for a Data Driven Economy," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 22(3), pages 197-217, September.
    8. Ion Popa & Marian Mihai Cioc & Andreea Breazu & Catalina Florentina Popa, 2024. "Identifying Sufficient and Necessary Competencies in the Effective Use of Artificial Intelligence Technologies," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 26(65), pages 1-33, February.
    9. Emilio Colombo & Alberto Marcato, 2021. "Skill Demand and Labour Market Concentration: Theory and Evidence from Italian Vacancies," DISEIS - Quaderni del Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo dis2104, Università Cattolica del Sacro Cuore, Dipartimento di Economia internazionale, delle istituzioni e dello sviluppo (DISEIS).
    10. Giordano, Vito & Spada, Irene & Chiarello, Filippo & Fantoni, Gualtiero, 2024. "The impact of ChatGPT on human skills: A quantitative study on twitter data," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    11. Chiarello, Filippo & Fantoni, Gualtiero & Hogarth, Terence & Giordano, Vito & Baltina, Liga & Spada, Irene, 2021. "Towards ESCO 4.0 – Is the European classification of skills in line with Industry 4.0? A text mining approach," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    12. Jurgita Bruneckiene & Robertas Jucevicius & Ineta Zykiene & Jonas Rapsikevicius & Mantas Lukauskas, 2019. "Assessment of Investment Attractiveness in European Countries by Artificial Neural Networks: What Competences are Needed to Make a Decision on Collective Well-Being?," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    13. Oriza Candra & Abdeljelil Chammam & José Ricardo Nuñez Alvarez & Iskandar Muda & Hikmet Ş. Aybar, 2023. "The Impact of Renewable Energy Sources on the Sustainable Development of the Economy and Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(3), pages 1-11, January.
    14. Cheng-Feng Cheng & Chien-Che Huang & Ming-Chang Lin & Ta-Cheng Chen, 2023. "Exploring Effectiveness of Relationship Marketing on Artificial Intelligence Adopting Intention," SAGE Open, , vol. 13(4), pages 21582440231, December.
    15. Ciocodeică David-Florin & Berbece Ștefan-Alexandru & Pestrea Constantin-Daniel, 2024. "The Impact of Artificial Intelligence on the Labor Market in Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 18(1), pages 198-208.
    16. Maciej Berk{e}sewicz & Greta Bia{l}kowska & Krzysztof Marcinkowski & Magdalena Ma'slak & Piotr Opiela & Robert Pater & Katarzyna Zadroga, 2019. "Enhancing the Demand for Labour survey by including skills from online job advertisements using model-assisted calibration," Papers 1908.06731, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fran Stewart & Kathryn Kelley, 2020. "Connecting Hands and Heads: Retooling Engineering Technology for the “Smart†Manufacturing Workplace," Economic Development Quarterly, , vol. 34(1), pages 31-45, February.
    2. Barbieri, Laura & Mussida, Chiara & Piva, Mariacristina & Vivarelli, Marco, 2019. "Testing the employment and skill impact of new technologies: A survey and some methodological issues," MERIT Working Papers 2019-032, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).
    3. Janssen, Simon & Mohrenweiser, Jens, 2018. "The Shelf Life of Incumbent Workers during Accelerating Technological Change: Evidence from a Training Regulation Reform," IZA Discussion Papers 11312, Institute of Labor Economics (IZA).
    4. Hidalgo, Camila & Micco, Alejandro, 2024. "Computerization, offshoring and trade: The effect on developing countries," World Development, Elsevier, vol. 180(C).
    5. Georg Graetz & Guy Michaels, 2018. "Robots at Work," The Review of Economics and Statistics, MIT Press, vol. 100(5), pages 753-768, December.
    6. Maria-Chiara Morandini & Anna Thum-Thysen & Anneleen Vandeplas, 2020. "Facing the Digital Transformation: Are Digital Skills Enough?," European Economy - Economic Briefs 054, Directorate General Economic and Financial Affairs (DG ECFIN), European Commission.
    7. Geiger, Niels & Prettner, Klaus & Schwarzer, Johannes A., 2018. "Automatisierung, Wachstum und Ungleichheit," Hohenheim Discussion Papers in Business, Economics and Social Sciences 13-2018, University of Hohenheim, Faculty of Business, Economics and Social Sciences.
    8. Crowley, Frank & Doran, Justin, 2019. "Automation and Irish Towns: Who's Most at Risk?," SRERC Working Paper Series SRERCWP2019-1, University College Cork (UCC), Spatial and Regional Economic Research Centre (SRERC).
    9. Cirillo, Valeria & Evangelista, Rinaldo & Guarascio, Dario & Sostero, Matteo, 2021. "Digitalization, routineness and employment: An exploration on Italian task-based data," Research Policy, Elsevier, vol. 50(7).
    10. Ben Vermeulen & Jan Kesselhut & Andreas Pyka & Pier Paolo Saviotti, 2018. "The Impact of Automation on Employment: Just the Usual Structural Change?," Sustainability, MDPI, vol. 10(5), pages 1-27, May.
    11. Jelena Reljic & Rinaldo Evangelista & Mario Pianta, 2019. "Digital technologies, employment and skills," LEM Papers Series 2019/36, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. Wang, Huijuan & Ding, Lin & Guan, Rong & Xia, Yan, 2020. "Effects of advancing internet technology on Chinese employment: a spatial study of inter-industry spillovers," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    13. Zilian, Laura S. & Zilian, Stella S. & Jäger, Georg, 2021. "Labour market polarisation revisited: evidence from Austrian vacancy data," Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 55, pages 1-7.
    14. Alejandro Micco, 2019. "The Impact of Automation in Developed Countries," Working Papers wp480, University of Chile, Department of Economics.
    15. Thomsen, Stephan L, 2018. "Die Rolle der Computerisierung und Digitalisierung für Beschäftigung und Einkommen," Hannover Economic Papers (HEP) dp-645, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Prettner, Klaus & Strulik, Holger, 2020. "Innovation, automation, and inequality: Policy challenges in the race against the machine," Journal of Monetary Economics, Elsevier, vol. 116(C), pages 249-265.
    17. Krenz, Astrid & Prettner, Klaus & Strulik, Holger, 2021. "Robots, reshoring, and the lot of low-skilled workers," European Economic Review, Elsevier, vol. 136(C).
    18. Hensvik, Lena & Skans, Oskar Nordström, 2023. "The skill-specific impact of past and projected occupational decline," Labour Economics, Elsevier, vol. 81(C).
    19. repec:hal:spmain:info:hdl:2441/7n49nkmngd8448a5ts5gt5ade0 is not listed on IDEAS
    20. Cheng, Can & Luo, Jiayu & Zhu, Chun & Zhang, Shangfeng, 2024. "Artificial intelligence and the skill premium: A numerical analysis of theoretical models," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    21. Naude, Wim, 2019. "The race against the robots and the fallacy of the giant cheesecake: Immediate and imagined impacts of artificial intelligence," MERIT Working Papers 2019-005, United Nations University - Maastricht Economic and Social Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    Machinelearning; Web vacancies; Skill analysis; Automation;
    All these keywords.

    JEL classification:

    • J24 - Labor and Demographic Economics - - Demand and Supply of Labor - - - Human Capital; Skills; Occupational Choice; Labor Productivity
    • J63 - Labor and Demographic Economics - - Mobility, Unemployment, Vacancies, and Immigrant Workers - - - Turnover; Vacancies; Layoffs
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:iepoli:v:47:y:2019:i:c:p:27-37. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505549 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.