IDEAS home Printed from https://ideas.repec.org/p/cdl/uctcwp/qt6ct7x8hp.html
   My bibliography  Save this paper

Examining the Cycle: How Perceived and Actual Bicycling Risk Influence Cycling Frequency, Roadway Design Preferences, and Support for Cycling Among Bay Area Residents

Author

Listed:
  • Sanders, Rebecca Lauren

Abstract

This dissertation investigates the connection between perceived and actual bicycling risk, andhow they both affect and are affected by one’s attitudes, knowledge, behavior, and experiences. Understanding bicycling risk has gained importance as efforts by the U.S. Department of Transportation, the Environmental Protection Agency, the Centers for Disease Control & Prevention, and others have urged communities to increase cycling for its health, environmental, and social equity benefits. Research has identified numerous barriers to increased bicycling in the U.S., including topography, weather, and trip distance, but the barrier that appears most consistently between studies is the perceived hazard associated with cycling near motorists. Yet, little research has fully explored the concept of risk to understand its component parts, including how 1) various driver actions affect perceived and actual cycling risk, 2) reported crash statistics reflect perceived and actual risk, 3) roadway design preferences are affected by perceived risk, and 4) attitudes toward cycling and cycling risk—especially among drivers—influence support for bicycling in one’s community. A deeper understanding of perceived and actual risk is critical for knowing how to address it, and, ultimately, to encourage more people to bicycle. To begin to answer these questions and demystify bicycling risk, this dissertation employs three main methods: focus groups, an online survey (n=463), and an analysis of reported crash data from the San Francisco Bay Area, one of the regions at the forefront of cycling efforts in the U.S. My findings confirm that perceived and actual cycling risk influence the decision to bicycle, but indicate that the causal pathways are more nuanced than previously understood. First, my data suggest that cyclists experience two types of roadway risk: pervasive risk in the form of near misses that occur frequently, and acute risk that occurs when a cyclist is struck—a less frequent, but more injurious incident. Both types—but particularly near misses— significantly affect perceived risk for cyclists and their family and friends, yet we lack systematic data on near misses and are therefore almost completely ignorant about the extent and effect of their occurrence. Routinely-collected reported crash data provide only limited insight into the type and extent of risk cyclists experience. Second, roadway design preferences are significantly related to perceived risk, and particularly important for attracting new cyclists. Surprisingly, drivers and cyclists both prefer roadway designs with separated space for bicyclists, particularly if barrier-separated, regardless of cycling frequency. Shared space designs are less popular among drivers and much less popular among cyclists, particularly for people who might consider cycling but do not currently do so: only a tiny fraction of potential cyclists feel comfortable sharing space with drivers on commercial streets. Third, perceived cycling risk extends beyond fear of danger for oneself, and is significantly related to support for cycling in one’s community. Structural equation models of perceived cycling risk, attitudes, and behavior revealed that respondents are affected by their perceived risk as cyclists, but also as drivers sharing the roadway with cyclists they view as “scofflaws”, and the risks they project onto other cyclists—particularly those cycling with children. This multi-pronged belief in cycling risk significantly negatively affects bicycling support, including support for new bicycle facilities and public funding to encourage cycling. Based on these findings, I propose a revised theoretical framework for conceptualizing cycling risk and its influences. I conclude the dissertation with policy recommendations for addressing perceived risk.

Suggested Citation

  • Sanders, Rebecca Lauren, 2013. "Examining the Cycle: How Perceived and Actual Bicycling Risk Influence Cycling Frequency, Roadway Design Preferences, and Support for Cycling Among Bay Area Residents," University of California Transportation Center, Working Papers qt6ct7x8hp, University of California Transportation Center.
  • Handle: RePEc:cdl:uctcwp:qt6ct7x8hp
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/6ct7x8hp.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Vredin Johansson, Maria & Heldt, Tobias & Johansson, Per, 2006. "The effects of attitudes and personality traits on mode choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 507-525, July.
    2. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    3. Sanders, Rebecca L & Cooper, Jill F, 2013. "Do All Roadway Users Want the Same Things?," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1zn7w26v, Institute of Transportation Studies, UC Berkeley.
    4. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    5. Flamm, Bradley John, 2006. "Environmental Knowledge, Environmental Attitudes, and Vehicle Ownership and Use," University of California Transportation Center, Working Papers qt6pv1x9xq, University of California Transportation Center.
    6. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    7. Johnson, Emily S. & Ragland, David R & Cooper, Jill F & O'Connor, Terri, 2005. "Pedestrian and Bicycle Safety Evaluation for the City of Emeryville at Four Intersections," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt89r2j4p5, Institute of Transportation Studies, UC Berkeley.
    8. Slovic, Paul & Finucane, Melissa L. & Peters, Ellen & MacGregor, Donald G., 2007. "The affect heuristic," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1333-1352, March.
    9. Chen, L. & Chen, C. & Srinivasan, R. & McKnight, C.E. & Ewing, R. & Roe, M., 2012. "Evaluating the safety effects of bicycle lanes in New York City," American Journal of Public Health, American Public Health Association, vol. 102(6), pages 1120-1127.
    10. Schneider, Robert J., 2013. "Theory of routine mode choice decisions: An operational framework to increase sustainable transportation," Transport Policy, Elsevier, vol. 25(C), pages 128-137.
    11. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    12. Ali Siddiq Alhakami & Paul Slovic, 1994. "A Psychological Study of the Inverse Relationship Between Perceived Risk and Perceived Benefit," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1085-1096, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Burke, Charles M. & Scott, Darren M., 2016. "The space race: A framework to evaluate the potential travel-time impacts of reallocating road space to bicycle facilities," Journal of Transport Geography, Elsevier, vol. 56(C), pages 110-119.
    2. Sreten Jevremović & Ana Trpković & Svetlana Čičević & Marjana Čubranić Dobrodolac & Carol Kachadoorian, 2024. "Age-Friendly Cycling Infrastructure—Differences and Preferences among 50+ Cyclists," Sustainability, MDPI, vol. 16(17), pages 1-19, August.
    3. Aldred, Rachel, 2016. "Cycling near misses: Their frequency, impact, and prevention," Transportation Research Part A: Policy and Practice, Elsevier, vol. 90(C), pages 69-83.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanders, Rebecca L, 2013. "Examining the Cycle: How Perceived and Actual Bicycling Risk Influence Cylcing Frequency, Roadway Design Preferences, and Support for Cycling Among Bay Area Residents," University of California Transportation Center, Working Papers qt1tf5v738, University of California Transportation Center.
    2. Sanders, Rebecca L., 2016. "We can all get along: The alignment of driver and bicyclist roadway design preferences in the San Francisco Bay Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 120-133.
    3. Wang, Chih-Hao & Akar, Gulsah & Guldmann, Jean-Michel, 2015. "Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University," Journal of Transport Geography, Elsevier, vol. 42(C), pages 122-130.
    4. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    5. Houde, Maxime & Apparicio, Philippe & Séguin, Anne-Marie, 2018. "A ride for whom: Has cycling network expansion reduced inequities in accessibility in Montreal, Canada?," Journal of Transport Geography, Elsevier, vol. 68(C), pages 9-21.
    6. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    7. Federico Rupi & Kevin J. Krizek, 2019. "Visual Eye Gaze While Cycling: Analyzing Eye Tracking at Signalized Intersections in Urban Conditions," Sustainability, MDPI, vol. 11(21), pages 1-14, November.
    8. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.
    9. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    10. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    11. Macdonald, Elizabeth & Sanders, Rebecca & Supawanich, Paul, 2008. "The Effects of Transportation Corridors' Roadside Design Features on User Behavior and Safety, and Their Contributions to Health, Environmental Quality, and Community Economic Vitality: a Literature R," University of California Transportation Center, Working Papers qt12047015, University of California Transportation Center.
    12. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    13. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    14. Björklund, Gunilla & Mortazavi , Reza, 2013. "Influences of infrastructure and attitudes to health on value of travel time savings in bicycle journeys," Working papers in Transport Economics 2013:35, CTS - Centre for Transport Studies Stockholm (KTH and VTI).
    15. Tomás Rossetti & Verónica Saud & Ricardo Hurtubia, 2019. "I want to ride it where I like: measuring design preferences in cycling infrastructure," Transportation, Springer, vol. 46(3), pages 697-718, June.
    16. Chung, Jaehoon & Yao, Enjian & Pan, Long & Ko, Joonho, 2024. "Understanding the route choice preferences of private and dock-based public bike users using GPS data in Seoul, South Korea," Journal of Transport Geography, Elsevier, vol. 116(C).
    17. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    18. Michael Hardinghaus & Panagiotis Papantoniou, 2020. "Evaluating Cyclists’ Route Preferences with Respect to Infrastructure," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    19. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    20. Laird, James & Page, Matthew & Shen, Shujie, 2013. "The value of dedicated cyclist and pedestrian infrastructure on rural roads," Transport Policy, Elsevier, vol. 29(C), pages 86-96.

    More about this item

    Keywords

    Social and Behavioral Sciences;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:uctcwp:qt6ct7x8hp. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.