IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v46y2019i3d10.1007_s11116-017-9830-y.html
   My bibliography  Save this article

I want to ride it where I like: measuring design preferences in cycling infrastructure

Author

Listed:
  • Tomás Rossetti

    (Pontificia Universidad Católica de Chile)

  • Verónica Saud

    (University College London)

  • Ricardo Hurtubia

    (Pontificia Universidad Católica de Chile
    Pontificia Universidad Católica de Chile)

Abstract

Sidewalk cyclists are a major concern to planners in many cities around the world: they are considerable in numbers, and increase the risk of injury not only to pedestrians but also to themselves. Considering this, planners need evidence to design streets that nudge users into a more desirable behavior from a social perspective. This study analyzes a stated preferences survey that investigates commuters’ preferences for cycling at the sidewalk or street level. With this data, three models were calibrated: two Binomial Logit Models and an Integrated Choice and Latent Class Model. The three showed similar results in terms of preferences, with the ones including users’ characteristics providing richer behavioral insight and a better fit to observed results. On average, respondents prefer infrastructure located at the road level, especially if it is wide and not built next to bus routes. This preference for the road is even stronger in commuters that cycle to work often. We also conclude that building at the sidewalk level is not recommendable, especially in dense urban areas, and that design of cycling infrastructure can and should be informed by quantitative methods like the one proposed here.

Suggested Citation

  • Tomás Rossetti & Verónica Saud & Ricardo Hurtubia, 2019. "I want to ride it where I like: measuring design preferences in cycling infrastructure," Transportation, Springer, vol. 46(3), pages 697-718, June.
  • Handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9830-y
    DOI: 10.1007/s11116-017-9830-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-017-9830-y
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-017-9830-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    2. Hensher, David A., 2010. "Hypothetical bias, choice experiments and willingness to pay," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 735-752, July.
    3. Greene, William H. & Hensher, David A., 2003. "A latent class model for discrete choice analysis: contrasts with mixed logit," Transportation Research Part B: Methodological, Elsevier, vol. 37(8), pages 681-698, September.
    4. Beharry-Borg, Nesha & Scarpa, Riccardo, 2010. "Valuing quality changes in Caribbean coastal waters for heterogeneous beach visitors," Ecological Economics, Elsevier, vol. 69(5), pages 1124-1139, March.
    5. Green, Paul E & Srinivasan, V, 1978. "Conjoint Analysis in Consumer Research: Issues and Outlook," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 5(2), pages 103-123, Se.
    6. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    7. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    8. Wen, Chieh-Hua & Lai, Shan-Ching, 2010. "Latent class models of international air carrier choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 46(2), pages 211-221, March.
    9. J. Hunt & J. Abraham, 2007. "Influences on bicycle use," Transportation, Springer, vol. 34(4), pages 453-470, July.
    10. José Grisolía & Kenneth Willis, 2012. "A latent class model of theatre demand," Journal of Cultural Economics, Springer;The Association for Cultural Economics International, vol. 36(2), pages 113-139, May.
    11. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    12. Wardman, Mark & Tight, Miles & Page, Matthew, 2007. "Factors influencing the propensity to cycle to work," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 339-350, May.
    13. Ortúzar, Juan de Dios & Iacobelli, Andrés & Valeze, Claudio, 2000. "Estimating demand for a cycle-way network," Transportation Research Part A: Policy and Practice, Elsevier, vol. 34(5), pages 353-373, June.
    14. Joan Walker & Jieping Li, 2007. "Latent lifestyle preferences and household location decisions," Journal of Geographical Systems, Springer, vol. 9(1), pages 77-101, April.
    15. Ipek Sener & Naveen Eluru & Chandra Bhat, 2009. "An analysis of bicycle route choice preferences in Texas, US," Transportation, Springer, vol. 36(5), pages 511-539, September.
    16. Heiner, Ronald A, 1983. "The Origin of Predictable Behavior," American Economic Review, American Economic Association, vol. 73(4), pages 560-595, September.
    17. Chandra R. Bhat, 1997. "An Endogenous Segmentation Mode Choice Model with an Application to Intercity Travel," Transportation Science, INFORMS, vol. 31(1), pages 34-48, February.
    18. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    19. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    20. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    21. Joel L. Horowitz, 1983. "Statistical Comparison of Non-Nested Probabilistic Discrete Choice Models," Transportation Science, INFORMS, vol. 17(3), pages 319-350, August.
    22. Patrick Biernacki & Dan Waldorf, 1981. "Snowball Sampling: Problems and Techniques of Chain Referral Sampling," Sociological Methods & Research, , vol. 10(2), pages 141-163, November.
    23. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    2. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    3. Hsueh, Chieh & Lin, Jen-Jia, 2023. "Influential factors of the route choices of scooter riders: A GPS-based data study," Journal of Transport Geography, Elsevier, vol. 113(C).
    4. Márquez, Luis & Soto, Jose J., 2021. "Integrating perceptions of safety and bicycle theft risk in the analysis of cycling infrastructure preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 285-301.
    5. Rossetti, Tomás & Hurtubia, Ricardo, 2020. "An assessment of the ecological validity of immersive videos in stated preference surveys," Journal of choice modelling, Elsevier, vol. 34(C).
    6. Chiara Ricchetti & Lucia Rotaris, 2024. "The role of linear green infrastructure for cycling: A literature review," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2024(1), pages 219-256.
    7. Bahamonde-Birke, Francisco J. & Geigenmüller, Iris M. & Mouter, Niek & van Lierop, Dea S. & Ettema, Dick F., 2024. "How do I want the city council to spend our budget? Conceiving MaaS from a citizen's perspective … (as well as biking infrastructure and public transport)," Transport Policy, Elsevier, vol. 145(C), pages 96-104.
    8. Valenzuela-Levi, N. & Echiburu, T. & Correa, J. & Hurtubia, R. & Muñoz, J.C., 2021. "Housing and accessibility after the COVID-19 pandemic: Rebuilding for resilience, equity and sustainable mobility," Transport Policy, Elsevier, vol. 109(C), pages 48-60.
    9. Mix, Richard & Hurtubia, Ricardo & Raveau, Sebastián, 2022. "Optimal location of bike-sharing stations: A built environment and accessibility approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 126-142.
    10. Liu, Yanan & Yang, Dujuan & Timmermans, Harry J.P. & de Vries, Bauke, 2020. "Analysis of the impact of street-scale built environment design near metro stations on pedestrian and cyclist road segment choice: A stated choice experiment," Journal of Transport Geography, Elsevier, vol. 82(C).
    11. Michael Hardinghaus & Panagiotis Papantoniou, 2020. "Evaluating Cyclists’ Route Preferences with Respect to Infrastructure," Sustainability, MDPI, vol. 12(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossetti, Tomás & Guevara, C. Angelo & Galilea, Patricia & Hurtubia, Ricardo, 2018. "Modeling safety as a perceptual latent variable to assess cycling infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 252-265.
    2. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    3. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    4. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    5. Kim, Sung Hoo & Mokhtarian, Patricia L., 2023. "Finite mixture (or latent class) modeling in transportation: Trends, usage, potential, and future directions," Transportation Research Part B: Methodological, Elsevier, vol. 172(C), pages 134-173.
    6. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    7. Chen, Ching-Fu & Chen, Pei-Chun, 2013. "Estimating recreational cyclists’ preferences for bicycle routes – Evidence from Taiwan," Transport Policy, Elsevier, vol. 26(C), pages 23-30.
    8. Lu, Wei & Scott, Darren M. & Dalumpines, Ron, 2018. "Understanding bike share cyclist route choice using GPS data: Comparing dominant routes and shortest paths," Journal of Transport Geography, Elsevier, vol. 71(C), pages 172-181.
    9. Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    10. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    11. Ehrgott, Matthias & Wang, Judith Y.T. & Raith, Andrea & van Houtte, Chris, 2012. "A bi-objective cyclist route choice model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(4), pages 652-663.
    12. Hurtubia, Ricardo & Nguyen, My Hang & Glerum, Aurélie & Bierlaire, Michel, 2014. "Integrating psychometric indicators in latent class choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 135-146.
    13. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    14. Khakdaman, Masoud & Rezaei, Jafar & Tavasszy, Lóránt A., 2020. "Shippers’ willingness to delegate modal control in freight transportation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    15. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    16. Felipe González & Carlos Melo-Riquelme & Louis Grange, 2016. "A combined destination and route choice model for a bicycle sharing system," Transportation, Springer, vol. 43(3), pages 407-423, May.
    17. Kamargianni, Maria, 2015. "Investigating next generation's cycling ridership to promote sustainable mobility in different types of cities," Research in Transportation Economics, Elsevier, vol. 53(C), pages 45-55.
    18. Scott, Darren M. & Lu, Wei & Brown, Matthew J., 2021. "Route choice of bike share users: Leveraging GPS data to derive choice sets," Journal of Transport Geography, Elsevier, vol. 90(C).
    19. Hallberg, Martin & Rasmussen, Thomas Kjær & Rich, Jeppe, 2021. "Modelling the impact of cycle superhighways and electric bicycles," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 397-418.
    20. Damant-Sirois, Gabriel & El-Geneidy, Ahmed M., 2015. "Who cycles more? Determining cycling frequency through a segmentation approach in Montreal, Canada," Transportation Research Part A: Policy and Practice, Elsevier, vol. 77(C), pages 113-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:46:y:2019:i:3:d:10.1007_s11116-017-9830-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.