IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v189y2024ics0965856424002647.html
   My bibliography  Save this article

Cycle highway effects: Assessing modal choice to cycling in the Netherlands

Author

Listed:
  • Macedo Filho, Francisco Edson
  • Ploegmakers, Huub
  • de Kruijf, Joost
  • Bussche, Dirk

Abstract

Cycle highways are regarded as a promising new type of infrastructure because they promote longer-distance cycling between (sub)urban residential areas and work and study centers. This study examines whether the emerging network of regional cycle highways in the Netherlands has contributed to a modal shift from car to bicycle. More specifically, we investigate the effect of these routes on commuting bicycle mode choice. Our main data sources are a national travel survey covering commuting journeys that were made between 2010 and 2021 and a comprehensive dataset we have compiled to document the exact timing and status of all cycle highways in the Netherlands. We employ a difference-in-differences approach with a binary logit model, comparing bicycle mode choice versus the car for trips that benefited from a new cycle highway, before and after the introduction of the new infrastructure, with a control group of trips that were not affected by the construction of a new route. We present results from a novel routing-based approach to measuring exposure to this new cycling facility, which allows us to establish the extent to which the fastest route to work traverses a newly constructed cycle highway. After controlling for relevant covariates, our main results indicate that the introduction of cycle highways has contributed to a shift in commuting behavior toward cycling, with an increase of approximately 10 % in cycling probability post-intervention for trips highly exposed to cycle highways. The results also indicate some heterogeneity in the effects of cycle highways across different groups of individuals. The findings of this study are especially important in the context of the Netherlands (or similar biking countries, such as Denmark). Although these countries have well-established cycling infrastructure, they can still derive benefits from new cycling routes and can support decision-makers in other countries who want to invest in cycling in the near future.

Suggested Citation

  • Macedo Filho, Francisco Edson & Ploegmakers, Huub & de Kruijf, Joost & Bussche, Dirk, 2024. "Cycle highway effects: Assessing modal choice to cycling in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transa:v:189:y:2024:i:c:s0965856424002647
    DOI: 10.1016/j.tra.2024.104216
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856424002647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2024.104216?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jinhyun Hong & David Philip McArthur & Mark Livingston, 2020. "The evaluation of large cycling infrastructure investments in Glasgow using crowdsourced cycle data," Transportation, Springer, vol. 47(6), pages 2859-2872, December.
    2. Cervero, R. & Duncan, M., 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," American Journal of Public Health, American Public Health Association, vol. 93(9), pages 1478-1483.
    3. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    4. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    5. Aldred, Rachel & Croft, Joseph & Goodman, Anna, 2019. "Impacts of an active travel intervention with a cycling focus in a suburban context: One-year findings from an evaluation of London’s in-progress mini-Hollands programme," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 147-169.
    6. Jessica Schoner & David Levinson, 2014. "The missing link: bicycle infrastructure networks and ridership in 74 US cities," Transportation, Springer, vol. 41(6), pages 1187-1204, November.
    7. Qiyao Yang & Jun Cai & Tao Feng & Zhengying Liu & Harry Timmermans, 2021. "Bikeway Provision and Bicycle Commuting: City-Level Empirical Findings from the US," Sustainability, MDPI, vol. 13(6), pages 1-15, March.
    8. Puhani, Patrick A., 2012. "The treatment effect, the cross difference, and the interaction term in nonlinear “difference-in-differences” models," Economics Letters, Elsevier, vol. 115(1), pages 85-87.
    9. Susan Handy & Bert van Wee & Maarten Kroesen, 2014. "Promoting Cycling for Transport: Research Needs and Challenges," Transport Reviews, Taylor & Francis Journals, vol. 34(1), pages 4-24, January.
    10. Cervero, Robert & Duncan, Michael, 2003. "Walking, Bicycling, and Urban Landscapes: Evidence from the San Francisco Bay Area," University of California Transportation Center, Working Papers qt6zr1x95m, University of California Transportation Center.
    11. Goodman, A. & Sahlqvist, S. & Ogilvie, D., 2014. "New walking and cycling routes and increased physical activity: One- and 2-year findings from the UK iConnect study," American Journal of Public Health, American Public Health Association, vol. 104(9), pages 38-46.
    12. Chang, Annie & Miranda-Moreno, Luis & Cao, Jason & Welle, Ben, 2017. "The effect of BRT implementation and streetscape redesign on physical activity: A case study of Mexico City," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 337-347.
    13. Braun, Lindsay M. & Rodriguez, Daniel A. & Cole-Hunter, Tom & Ambros, Albert & Donaire-Gonzalez, David & Jerrett, Michael & Mendez, Michelle A. & Nieuwenhuijsen, Mark J. & de Nazelle, Audrey, 2016. "Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 164-183.
    14. Menghini, G. & Carrasco, N. & Schüssler, N. & Axhausen, K.W., 2010. "Route choice of cyclists in Zurich," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(9), pages 754-765, November.
    15. Tilahun, Nebiyou Y. & Levinson, David M. & Krizek, Kevin J., 2007. "Trails, lanes, or traffic: Valuing bicycle facilities with an adaptive stated preference survey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(4), pages 287-301, May.
    16. Ralph Buehler & John Pucher, 2012. "Cycling to work in 90 large American cities: new evidence on the role of bike paths and lanes," Transportation, Springer, vol. 39(2), pages 409-432, March.
    17. Bruno, Matthew & Nikolaeva, Anna, 2020. "Towards a maintenance-based approach to mode shift: Comparing two cases of Dutch cycling policy using social practice theory," Journal of Transport Geography, Elsevier, vol. 86(C).
    18. Gabriel José Cabral Dias & Paulo Jorge Gomes Ribeiro, 2021. "Cycle Highways: a new concept of infrastructure," European Planning Studies, Taylor & Francis Journals, vol. 29(6), pages 1003-1020, June.
    19. Rodriguez-Valencia, Alvaro & Rosas-Satizábal, Daniel & Gordo, Daniel & Ochoa, Andrés, 2019. "Impact of household proximity to the cycling network on bicycle ridership: The case of Bogotá," Journal of Transport Geography, Elsevier, vol. 79(C), pages 1-1.
    20. Skov-Petersen, Hans & Jacobsen, Jette Bredahl & Vedel, Suzanne Elizabeth & Thomas Alexander, Sick Nielsen & Rask, Simon, 2017. "Effects of upgrading to cycle highways - An analysis of demand induction, use patterns and satisfaction before and after," Journal of Transport Geography, Elsevier, vol. 64(C), pages 203-210.
    21. Nebiyou Tilahun & Kevin Krizek & David Levinson, 2007. "Trails, Lanes, or Traffic: Value of Different Bicycle Facilities Using Adaptive Stated-Preference Survey," Working Papers 200701, University of Minnesota: Nexus Research Group.
    22. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.
    23. Ton, Danique & Duives, Dorine C. & Cats, Oded & Hoogendoorn-Lanser, Sascha & Hoogendoorn, Serge P., 2019. "Cycling or walking? Determinants of mode choice in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 123(C), pages 7-23.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fitch, Dillon T. & Handy, Susan L., 2020. "Road environments and bicyclist route choice: The cases of Davis and San Francisco, CA," Journal of Transport Geography, Elsevier, vol. 85(C).
    2. Vedel, Suzanne Elizabeth & Jacobsen, Jette Bredahl & Skov-Petersen, Hans, 2017. "Bicyclists’ preferences for route characteristics and crowding in Copenhagen – A choice experiment study of commuters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 53-64.
    3. Park, Yujin & Akar, Gulsah, 2019. "Why do bicyclists take detours? A multilevel regression model using smartphone GPS data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 191-200.
    4. Braun, Lindsay M. & Rodriguez, Daniel A. & Cole-Hunter, Tom & Ambros, Albert & Donaire-Gonzalez, David & Jerrett, Michael & Mendez, Michelle A. & Nieuwenhuijsen, Mark J. & de Nazelle, Audrey, 2016. "Short-term planning and policy interventions to promote cycling in urban centers: Findings from a commute mode choice analysis in Barcelona, Spain," Transportation Research Part A: Policy and Practice, Elsevier, vol. 89(C), pages 164-183.
    5. Xueying Wu & Yi Lu & Yaoyu Lin & Yiyang Yang, 2019. "Measuring the Destination Accessibility of Cycling Transfer Trips in Metro Station Areas: A Big Data Approach," IJERPH, MDPI, vol. 16(15), pages 1-16, July.
    6. Michael Hardinghaus & Simon Nieland & Marius Lehne & Jan Weschke, 2021. "More than Bike Lanes—A Multifactorial Index of Urban Bikeability," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    7. Milakis, Dimitris & Athanasopoulos, Konstantinos, 2014. "What about people in cycle network planning? applying participative multicriteria GIS analysis in the case of the Athens metropolitan cycle network," Journal of Transport Geography, Elsevier, vol. 35(C), pages 120-129.
    8. Mogens Fosgerau & Miroslawa Lukawska & Mads Paulsen & Thomas Kj{ae}r Rasmussen, 2022. "Bikeability and the induced demand for cycling," Papers 2210.02504, arXiv.org, revised Dec 2022.
    9. Márquez, Luis & Soto, Jose J., 2021. "Integrating perceptions of safety and bicycle theft risk in the analysis of cycling infrastructure preferences," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 285-301.
    10. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    11. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    12. Broach, Joseph & Dill, Jennifer & Gliebe, John, 2012. "Where do cyclists ride? A route choice model developed with revealed preference GPS data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(10), pages 1730-1740.
    13. Anowar, Sabreena & Eluru, Naveen & Hatzopoulou, Marianne, 2017. "Quantifying the value of a clean ride: How far would you bicycle to avoid exposure to traffic-related air pollution?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 66-78.
    14. Ospina, Juan P. & Duque, Juan C. & Botero-Fernández, Verónica & Montoya, Alejandro, 2022. "The maximal covering bicycle network design problem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 222-236.
    15. Paulsen, Mads & Rich, Jeppe, 2023. "Societally optimal expansion of bicycle networks," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    16. Ali Al-Ramini & Mohammad A Takallou & Daniel P Piatkowski & Fadi Alsaleem, 2022. "Quantifying changes in bicycle volumes using crowdsourced data," Environment and Planning B, , vol. 49(6), pages 1612-1630, July.
    17. Van Veghel, Daniel & Scott, Darren M., 2024. "Investigating the impacts of bike lanes on bike share ridership: A holistic approach and demonstration," Journal of Transport Geography, Elsevier, vol. 115(C).
    18. McArthur, David Philip & Hong, Jinhyun, 2019. "Visualising where commuting cyclists travel using crowdsourced data," Journal of Transport Geography, Elsevier, vol. 74(C), pages 233-241.
    19. Osama, Ahmed & Sayed, Tarek & Bigazzi, Alexander Y., 2017. "Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 14-28.
    20. Ralph Buehler & Jennifer Dill, 2016. "Bikeway Networks: A Review of Effects on Cycling," Transport Reviews, Taylor & Francis Journals, vol. 36(1), pages 9-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:189:y:2024:i:c:s0965856424002647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.