IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt65s0d62v.html
   My bibliography  Save this paper

Performance Comparison of Crane Double CyclingStrategies

Author

Listed:
  • Goodchild, Anne V.
  • Daganzo, Carlos

Abstract

This report compares the performance of three double-cycling algorithms used to determine the sequence with which to load and unload containers from a vessel with a quay crane. Double cycling is a technique which can improve the efficiency of a quay crane and container port by unloading and loading containers in the same crane cycle. The three algorithms, the greedy strategy, the proximal strategy, and Johnson’s rule, are introduced and results from applying the three strategies to a set of simulated vessels are compared. While Johnson’s rule provides the minimum number of cycles required to unload and load a vessel using double cycling, it is operationally less convenient. The proximal strategy is operationally convenient, but provides a smaller benefit when compared to single cycling. All strategies provide significant benefit (about a 40% reduction over single cycling for hatchless ships), and the results are not particularly sensitive to the algorithm used.

Suggested Citation

  • Goodchild, Anne V. & Daganzo, Carlos, 2005. "Performance Comparison of Crane Double CyclingStrategies," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt65s0d62v, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt65s0d62v
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/65s0d62v.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Goodchild, Anne Victoria, 2005. "Crane Double Cycling in Container Ports: Algorithms, Evaluation, and Planning," University of California Transportation Center, Working Papers qt0nt8t1db, University of California Transportation Center.
    2. Goodchild, Anne V. & Daganzo, Carlos F., 2005. "Crane Double Cycling in Container Ports: Affect on Ship Dwell Time," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt9qp7p7jq, Institute of Transportation Studies, UC Berkeley.
    3. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yanling Chu & Xiaoju Zhang & Zhongzhen Yang, 2017. "Multiple quay cranes scheduling for double cycling in container terminals," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-19, July.
    2. Dusan Ku & Tiru S. Arthanari, 2016. "On double cycling for container port productivity improvement," Annals of Operations Research, Springer, vol. 243(1), pages 55-70, August.
    3. Liu, Ming & Chu, Feng & Zhang, Zizhen & Chu, Chengbin, 2015. "A polynomial-time heuristic for the quay crane double-cycling problem with internal-reshuffling operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 52-74.
    4. Anne V. Goodchild & Carlos F. Daganzo, 2006. "Double-Cycling Strategies for Container Ships and Their Effect on Ship Loading and Unloading Operations," Transportation Science, INFORMS, vol. 40(4), pages 473-483, November.
    5. Wlodzimierz Szwarc & Jatinder N. D. Gupta, 1987. "A flow‐shop problem with sequence‐dependent additive setup times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 619-627, October.
    6. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    7. Brammer, Janis & Lutz, Bernhard & Neumann, Dirk, 2022. "Permutation flow shop scheduling with multiple lines and demand plans using reinforcement learning," European Journal of Operational Research, Elsevier, vol. 299(1), pages 75-86.
    8. Vincent T’kindt & Federico Della Croce & Mathieu Liedloff, 2022. "Moderate exponential-time algorithms for scheduling problems," 4OR, Springer, vol. 20(4), pages 533-566, December.
    9. Vineet Jain & Tilak Raj, 2018. "An adaptive neuro-fuzzy inference system for makespan estimation of flexible manufacturing system assembly shop: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1302-1314, December.
    10. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    11. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    12. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    13. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    14. Chen, Xin & Miao, Qian & Lin, Bertrand M.T. & Sterna, Malgorzata & Blazewicz, Jacek, 2022. "Two-machine flow shop scheduling with a common due date to maximize total early work," European Journal of Operational Research, Elsevier, vol. 300(2), pages 504-511.
    15. Wenchang Luo & Lin Chen & Guochuan Zhang, 2012. "Approximation schemes for two-machine flow shop scheduling with two agents," Journal of Combinatorial Optimization, Springer, vol. 24(3), pages 229-239, October.
    16. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    17. Rhonda Righter, 1997. "A generalized Johnson's rule for stochastic assembly systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(2), pages 211-220, March.
    18. Sterna, Małgorzata, 2021. "Late and early work scheduling: A survey," Omega, Elsevier, vol. 104(C).
    19. Arshad Ali & Yuvraj Gajpal & Tarek Y. Elmekkawy, 2021. "Distributed permutation flowshop scheduling problem with total completion time objective," OPSEARCH, Springer;Operational Research Society of India, vol. 58(2), pages 425-447, June.
    20. Yakov Zinder & Alexandr Kononov & Joey Fung, 2021. "A 5-parameter complexity classification of the two-stage flow shop scheduling problem with job dependent storage requirements," Journal of Combinatorial Optimization, Springer, vol. 42(2), pages 276-309, August.

    More about this item

    Keywords

    Engineering;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt65s0d62v. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucbus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.