IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v34y1987i5p619-627.html
   My bibliography  Save this article

A flow‐shop problem with sequence‐dependent additive setup times

Author

Listed:
  • Wlodzimierz Szwarc
  • Jatinder N. D. Gupta

Abstract

The flow‐shop scheduling problem with sequence‐dependent additive setup times is considered as a special case of the general problem, and a polynomially bounded approximate method is developed to find a minimum makespan permutation schedule. The approximate algorithm is shown to yield optimal results for the two‐machine case. A version of Sule's model is defined that produces the first approximation of the optimal solution for this problem. Computational experience along with numerical examples are provided to test the effectiveness of the method.

Suggested Citation

  • Wlodzimierz Szwarc & Jatinder N. D. Gupta, 1987. "A flow‐shop problem with sequence‐dependent additive setup times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 34(5), pages 619-627, October.
  • Handle: RePEc:wly:navres:v:34:y:1987:i:5:p:619-627
    DOI: 10.1002/1520-6750(198710)34:53.0.CO;2-B
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/1520-6750(198710)34:53.0.CO;2-B
    Download Restriction: no

    File URL: https://libkey.io/10.1002/1520-6750(198710)34:53.0.CO;2-B?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wlodzimierz Szwarc, 1981. "Extreme solutions of the two machine flow‐shop problem," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(1), pages 103-114, March.
    2. S. M. Johnson, 1954. "Optimal two‐ and three‐stage production schedules with setup times included," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 1(1), pages 61-68, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. J. Mason & E. J. Anderson, 1991. "Minimizing flow time on a single machine with job classes and setup times," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(3), pages 333-350, June.
    2. Yu, Tae-Sun & Han, Jun-Hee, 2021. "Scheduling proportionate flow shops with preventive machine maintenance," International Journal of Production Economics, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liqi Zhang & Lingfa Lu & Shisheng Li, 2016. "New results on two-machine flow-shop scheduling with rejection," Journal of Combinatorial Optimization, Springer, vol. 31(4), pages 1493-1504, May.
    2. Vincent T’kindt & Federico Della Croce & Mathieu Liedloff, 2022. "Moderate exponential-time algorithms for scheduling problems," 4OR, Springer, vol. 20(4), pages 533-566, December.
    3. Golpîra, Hêriş, 2020. "Smart Energy-Aware Manufacturing Plant Scheduling under Uncertainty: A Risk-Based Multi-Objective Robust Optimization Approach," Energy, Elsevier, vol. 209(C).
    4. Alexander Grigoriev & Martijn Holthuijsen & Joris van de Klundert, 2005. "Basic scheduling problems with raw material constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(6), pages 527-535, September.
    5. A. G. Leeftink & R. J. Boucherie & E. W. Hans & M. A. M. Verdaasdonk & I. M. H. Vliegen & P. J. Diest, 2018. "Batch scheduling in the histopathology laboratory," Flexible Services and Manufacturing Journal, Springer, vol. 30(1), pages 171-197, June.
    6. Yadong Wang & Baoqiang Fan & Jingang Zhai & Wei Xiong, 2019. "Two-machine flowshop scheduling in a physical examination center," Journal of Combinatorial Optimization, Springer, vol. 37(1), pages 363-374, January.
    7. Miri Gilenson & Dvir Shabtay & Liron Yedidsion & Rohit Malshe, 2021. "Scheduling in multi-scenario environment with an agreeable condition on job processing times," Annals of Operations Research, Springer, vol. 307(1), pages 153-173, December.
    8. Peng-Yeng Yin & Hsin-Min Chen & Yi-Lung Cheng & Ying-Chieh Wei & Ya-Lin Huang & Rong-Fuh Day, 2021. "Minimizing the Makespan in Flowshop Scheduling for Sustainable Rubber Circular Manufacturing," Sustainability, MDPI, vol. 13(5), pages 1-18, February.
    9. Asoo J. Vakharia & Yih‐Long Chang, 1990. "A simulated annealing approach to scheduling a manufacturing cell," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(4), pages 559-577, August.
    10. Yu, Tae-Sun & Han, Jun-Hee, 2021. "Scheduling proportionate flow shops with preventive machine maintenance," International Journal of Production Economics, Elsevier, vol. 231(C).
    11. Alfaro-Fernández, Pedro & Ruiz, Rubén & Pagnozzi, Federico & Stützle, Thomas, 2020. "Automatic Algorithm Design for Hybrid Flowshop Scheduling Problems," European Journal of Operational Research, Elsevier, vol. 282(3), pages 835-845.
    12. Vincent T’kindt & Karima Bouibede-Hocine & Carl Esswein, 2007. "Counting and enumeration complexity with application to multicriteria scheduling," Annals of Operations Research, Springer, vol. 153(1), pages 215-234, September.
    13. C.T. Ng & Mikhail Y. Kovalyov, 2004. "An FPTAS for scheduling a two‐machine flowshop with one unavailability interval," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(3), pages 307-315, April.
    14. Christoph Hertrich & Christian Weiß & Heiner Ackermann & Sandy Heydrich & Sven O. Krumke, 2020. "Scheduling a proportionate flow shop of batching machines," Journal of Scheduling, Springer, vol. 23(5), pages 575-593, October.
    15. F. Hwang & M. Kovalyov & B. Lin, 2014. "Scheduling for fabrication and assembly in a two-machine flowshop with a fixed job sequence," Annals of Operations Research, Springer, vol. 217(1), pages 263-279, June.
    16. A Corominas & R Pastor, 2011. "Designing greedy algorithms for the flow-shop problem by means of Empirically Adjusted Greedy Heuristics (EAGH)," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(9), pages 1704-1710, September.
    17. Bo Liu & Ling Wang & Ying Liu & Shouyang Wang, 2011. "A unified framework for population-based metaheuristics," Annals of Operations Research, Springer, vol. 186(1), pages 231-262, June.
    18. Kameng Nip & Zhenbo Wang & Fabrice Talla Nobibon & Roel Leus, 2015. "A combination of flow shop scheduling and the shortest path problem," Journal of Combinatorial Optimization, Springer, vol. 29(1), pages 36-52, January.
    19. Kim, T.Y., 2018. "Improving warehouse responsiveness by job priority management," Econometric Institute Research Papers EI2018-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Wu, Xueqi & Che, Ada, 2020. "Energy-efficient no-wait permutation flow shop scheduling by adaptive multi-objective variable neighborhood search," Omega, Elsevier, vol. 94(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:34:y:1987:i:5:p:619-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.