IDEAS home Printed from https://ideas.repec.org/a/spr/pubtra/v11y2019i3d10.1007_s12469-019-00210-3.html
   My bibliography  Save this article

Demonstration and evaluation of an intermittent bus lane strategy

Author

Listed:
  • Nicolas Chiabaut

    (Univ. Lyon, ENTPE, IFSTTAR, LICIT)

  • Anais Barcet

    (Univ. Lyon, ENTPE, IFSTTAR, LICIT)

Abstract

The innovative concept of intermittent bus lanes may lead to an important increase of bus system performance while limiting the reduction of the capacity devoted to general traffic. The main idea is that a general traffic lane can be intermittently converted to an exclusive bus lane. Frequently studied by analytical papers, practical demonstrations of the intermittent bus lane strategy are not numerous. Especially, the results of the two previous field tests are very specific to the test sites and are hardly transposable. This paper tries to fill this gap by proposing the results and the lessons learned of a new real-field demonstration in Lyon, France. After a detailed presentation of the 350-m case study, effects of an intermittent bus lane strategy on traffic conditions are evaluated. Then, analyses of the impacts on the bus systems performance are carefully performed and also compared to more classical bus operations: a transit signal priority strategy. The results show that an intermittent bus lane can be a promising strategy especially when it is combined with transit signal priority. The median travel time of the buses is significantly reduced whereas the regularity of the line increases.

Suggested Citation

  • Nicolas Chiabaut & Anais Barcet, 2019. "Demonstration and evaluation of an intermittent bus lane strategy," Public Transport, Springer, vol. 11(3), pages 443-456, October.
  • Handle: RePEc:spr:pubtra:v:11:y:2019:i:3:d:10.1007_s12469-019-00210-3
    DOI: 10.1007/s12469-019-00210-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s12469-019-00210-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s12469-019-00210-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    2. Todd, Michael, 2006. "Enhanced Transit Strategies: Bus Lanes with Intermittent Priority and ITS Technology Architectures for TOD Enhancement," Institute of Transportation Studies, Working Paper Series qt8h1969p9, Institute of Transportation Studies, UC Davis.
    3. Wu, Jianping & Hounsell, Nick, 1998. "Bus Priority Using pre-signals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 563-583, November.
    4. Eichler, Michael & Daganzo, Carlos F., 2006. "Bus lanes with intermittent priority: Strategy formulae and an evaluation," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 731-744, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duy Q. Nguyen-Phuoc & William Young & Graham Currie & Chris Gruyter, 2020. "Traffic congestion relief associated with public transport: state-of-the-art," Public Transport, Springer, vol. 12(2), pages 455-481, June.
    2. Yuriy Royko & Yevhen Fornalchyk & Eugeniusz Koda & Ivan Kernytskyy & Oleh Hrytsun & Romana Bura & Piotr Osinski & Anna Markiewicz & Tomasz Wierzbicki & Ruslan Barabash & Ruslan Humenuyk & Pavlo Polyan, 2023. "Public Transport Prioritization and Descriptive Criteria-Based Urban Sections Classification on Arterial Streets," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    3. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    4. Zhen Zhang & Lingfei Rong & Zhiquan Xie & Xiaoguang Yang, 2024. "Dynamic Multi-Function Lane Management for Connected and Automated Vehicles Considering Bus Priority," Sustainability, MDPI, vol. 16(18), pages 1-20, September.
    5. Takao Dantsuji & Daisuke Fukuda & Nan Zheng, 2021. "Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach," Transportation, Springer, vol. 48(2), pages 673-697, April.
    6. Yang, Bo & Wang, Chunsheng & Cao, Yuan & Yang, Qiaoli, 2024. "Modeling and evaluating the impact of variable bus lane on isolated signal intersection performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    7. Sonu Mathew & Srinivas S. Pulugurtha, 2020. "Assessing the effect of a light rail transit system on road traffic travel time reliability," Public Transport, Springer, vol. 12(2), pages 313-333, June.
    8. Mateusz Szarata & Piotr Olszewski & Lesław Bichajło, 2021. "Simulation Study of Dynamic Bus Lane Concept," Sustainability, MDPI, vol. 13(3), pages 1-15, January.
    9. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haitao, He & Menendez, Monica & Ilgin Guler, S., 2018. "Analytical evaluation of flexible-sharing strategies on multimodal arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 364-379.
    2. Murat Bayrak & S. Ilgin Guler, 2021. "Optimization of dedicated bus lane location on a transportation network while accounting for traffic dynamics," Public Transport, Springer, vol. 13(2), pages 325-347, June.
    3. Anderson, Paul & Geroliminis, Nikolas, 2020. "Dynamic lane restrictions on congested arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 135(C), pages 224-243.
    4. Nima Dadashzadeh & Murat Ergun, 2018. "Spatial bus priority schemes, implementation challenges and needs: an overview and directions for future studies," Public Transport, Springer, vol. 10(3), pages 545-570, December.
    5. Guler, S. Ilgin & Menendez, Monica, 2014. "Analytical formulation and empirical evaluation of pre-signals for bus priority," Transportation Research Part B: Methodological, Elsevier, vol. 64(C), pages 41-53.
    6. Lapardhaja, Servet & Jalota, Devansh & Doig, Jean & Almubarak, Abdullah & Cassidy, Michael, 2021. "Testing alternative treatments for underused carpool lanes on narrow freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 149(C), pages 139-149.
    7. Saeed Asadi Bagloee & Majid Sarvi & Avishai Ceder, 2017. "Transit priority lanes in the congested road networks," Public Transport, Springer, vol. 9(3), pages 571-599, October.
    8. Raphaël Lamotte & André de Palma & Nikolas Geroliminis, 2016. "Sharing the road: the economics of autonomous vehicles," Working Papers hal-01281425, HAL.
    9. Miriam Rocha & Cristina Albuquerque Moreira Silva & Reinaldo Germano Santos Junior & Michel Anzanello & Gabrielli Harumi Yamashita & Luis Antonio Lindau, 2020. "Selecting the most relevant variables towards clustering bus priority corridors," Public Transport, Springer, vol. 12(3), pages 587-609, October.
    10. Dingxin Wu & Wei Deng & Yan Song & Jian Wang & Dewen Kong, 2017. "Evaluating Operational Effects of Bus Lane with Intermittent Priority under Connected Vehicle Environments," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-13, April.
    11. Deka, Devajyoti, 2014. "An exploration of the environmental and rider characteristics associated with disability paratransit trip delay," Journal of Transport Geography, Elsevier, vol. 38(C), pages 75-87.
    12. Yang, Bo & Wang, Chunsheng & Cao, Yuan & Yang, Qiaoli, 2024. "Modeling and evaluating the impact of variable bus lane on isolated signal intersection performance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 643(C).
    13. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    14. Islam, Tarikul & Vu, Hai L. & Hoang, Nam H. & Cricenti, Antonio, 2018. "A linear bus rapid transit with transit signal priority formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 163-184.
    15. Tang, Qing & Hu, Xianbiao & Lu, Jiawei & Zhou, Xuesong, 2021. "Analytical characterization of multi-state effective discharge rates for bus-only lane conversion scheduling problem," Transportation Research Part B: Methodological, Elsevier, vol. 148(C), pages 106-131.
    16. Kampouri, Aikaterini & Politis, Ioannis & Georgiadis, Georgios, 2022. "A system-optimum approach for bus lanes dynamically activated by road traffic," Research in Transportation Economics, Elsevier, vol. 92(C).
    17. Michael W. Levin & Alireza Khani, 2018. "Dynamic transit lanes for connected and autonomous vehicles," Public Transport, Springer, vol. 10(3), pages 399-426, December.
    18. Yutong Sun & Jin Li & Xiaozhong Wei & Yuling Jiao, 2021. "Tandem Design of Bus Priority Based on a Pre-Signal System," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    19. Xuan, Yiguang & Gayah, Vikash & Daganzo, Carlos & Cassidy, Michael, 2009. "Multimodal Traffic at Isolated Signalized Intersections: New Management Strategies to Increase Capacity," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7fk7j154, Institute of Transportation Studies, UC Berkeley.
    20. Gonzales, Eric Justin, 2011. "Allocation of Space and the Costs of Multimodal Transport in Cities," University of California Transportation Center, Working Papers qt7s28n4nj, University of California Transportation Center.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:pubtra:v:11:y:2019:i:3:d:10.1007_s12469-019-00210-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.