IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt7hf7r2bf.html
   My bibliography  Save this paper

Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier

Author

Listed:
  • Ogden, Joan M
  • Yang, Christopher
  • Johnson, Nils
  • Ni, Jason
  • Lin, Zhenhong

Abstract

In this final report, we present results from research conducted under Phase I of NREL contract number XCM-4-44000-01, from May 2004-January 2005. The overall goal of this project is to better understand infrastructure development strategies for widespread implementation of hydrogen as an energy carrier. Under this contract, we continued earlier research on this topic, improving simulation tools to study hydrogen transition strategies, and applying these methods to a geographically specific case study in the Midwest. We also worked as part of the USDOE's H2A group, developing models of hydrogen delivery systems. Our technical approach is to attempt to capture the site-specific nature of the H2 infrastructure design problem by use of Geographic Information System (GIS) data as a basis for understanding the spatial relationships between hydrogen demand and supply and existing infrastructure. In this study, we explored the use of mathematical programming techniques to find the lowest cost strategy for building a widespread hydrogen energy system. The goal of the study is to develop a better understanding of the entire system over time, and formulate "rules of thumb" for low-cost regional hydrogen infrastructure strategies.

Suggested Citation

  • Ogden, Joan M & Yang, Christopher & Johnson, Nils & Ni, Jason & Lin, Zhenhong, 2005. "Technical and Economic Assessment of Transition Strategies Toward Widespread Use of Hydrogen as an Energy Carrier," Institute of Transportation Studies, Working Paper Series qt7hf7r2bf, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt7hf7r2bf
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/7hf7r2bf.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Berry, Gene D. & Pasternak, Alan D. & Rambach, Glenn D. & Ray Smith, J. & Schock, Robert N., 1996. "Hydrogen as a future transportation fuel," Energy, Elsevier, vol. 21(4), pages 289-303.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Christopher & Ogden, Joan M, 2008. "Determining the Lowest-Cost Hydrogen Delivery Mode," Institute of Transportation Studies, Working Paper Series qt8q27403q, Institute of Transportation Studies, UC Davis.
    2. Yang, Christopher & Ogden, Joan M, 2008. "Determining the Lowest-Cost Hydrogen Delivery Mode," Institute of Transportation Studies, Working Paper Series qt0st9s56s, Institute of Transportation Studies, UC Davis.
    3. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt1804p4vw, Institute of Transportation Studies, UC Davis.
    4. Yang, Christopher & Ogden, Joan M, 2007. "Determining the lowest-cost hydrogen delivery mode," Institute of Transportation Studies, Working Paper Series qt7p3500g2, Institute of Transportation Studies, UC Davis.
    5. Yang, Christopher & Nicholas, Michael A & Ogden, Joan M, 2006. "Comparison of Idealized and Real-World City Station Citing Models for Hydrogen Distribution," Institute of Transportation Studies, Working Paper Series qt06p1q3z3, Institute of Transportation Studies, UC Davis.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Mei-Qiang & Liu, Shu-sheng & Zhang, Yao & Zhang, Jian & Sun, Li-Xian & Xu, Fen, 2010. "Superior hydrogen storage properties of MgH2–10 wt.% TiC composite," Energy, Elsevier, vol. 35(8), pages 3417-3421.
    2. Yilmaz, Ceyhun & Kanoglu, Mehmet, 2014. "Thermodynamic evaluation of geothermal energy powered hydrogen production by PEM water electrolysis," Energy, Elsevier, vol. 69(C), pages 592-602.
    3. Lehua Bi & Shaorui Zhou & Jianjie Ke & Xiaoming Song, 2023. "Knowledge-Mapping Analysis of Urban Sustainable Transportation Using CiteSpace," Sustainability, MDPI, vol. 15(2), pages 1-29, January.
    4. Wang, Shuofeng & Ji, Changwei & Zhang, Bo, 2010. "Effects of hydrogen addition and cylinder cutoff on combustion and emissions performance of a spark-ignited gasoline engine under a low operating condition," Energy, Elsevier, vol. 35(12), pages 4754-4760.
    5. Farrell, Alexander E. & Keith, David W. & Corbett, James J., 2003. "A strategy for introducing hydrogen into transportation," Energy Policy, Elsevier, vol. 31(13), pages 1357-1367, October.
    6. Ghosh, P.C. & Vasudeva, U., 2011. "Analysis of 3000T class submarines equipped with polymer electrolyte fuel cells," Energy, Elsevier, vol. 36(5), pages 3138-3147.
    7. Ma, Li-Juan & Wang, Jianfeng & Han, Min & Jia, Jianfeng & Wu, Hai-Shun & Zhang, Xiang, 2019. "Adsorption of multiple H2 molecules on the complex TiC6H6: An unusual combination of chemisorption and physisorption," Energy, Elsevier, vol. 171(C), pages 315-325.
    8. Guo, Ying & He, Maogang & Zhong, Qiu & Zhang, Ying, 2009. "Mass diffusion coefficients of oxygenated fuel additives in air," Energy, Elsevier, vol. 34(10), pages 1560-1564.
    9. Kalamse, Vijayanand & Wadnerkar, Nitin & Chaudhari, Ajay, 2013. "Multi-functionalized naphthalene complexes for hydrogen storage," Energy, Elsevier, vol. 49(C), pages 469-474.
    10. Pukazhselvan, D. & Hudson, M. Sterlin Leo & Sinha, A.S.K. & Srivastava, O.N., 2010. "Studies on metal oxide nanoparticles catalyzed sodium aluminum hydride," Energy, Elsevier, vol. 35(12), pages 5037-5042.
    11. Tamilarasan, P. & Ramaprabhu, S., 2013. "Graphene based all-solid-state supercapacitors with ionic liquid incorporated polyacrylonitrile electrolyte," Energy, Elsevier, vol. 51(C), pages 374-381.
    12. Vudumu, Shravan K. & Koylu, Umit O., 2011. "Computational modeling, validation, and utilization for predicting the performance, combustion and emission characteristics of hydrogen IC engines," Energy, Elsevier, vol. 36(1), pages 647-655.
    13. Ogden, J & Yang, Christopher & Johnson, Nils & Ni, Jason & Lin, Zhenhong, 2005. "Technical And Economic Assessment Of Transition Strategies Toward Widespread Use Of Hydrogen As An Energy Carrier," Institute of Transportation Studies, Working Paper Series qt2jj0p5b2, Institute of Transportation Studies, UC Davis.
    14. Lee, Duu-Hwa & Hsu, Shih-Shun & Tso, Chun-To & Su, Ay & Lee, Duu-Jong, 2009. "An economy-wide analysis of hydrogen economy in Taiwan," Renewable Energy, Elsevier, vol. 34(8), pages 1947-1954.
    15. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    16. Sjardin, M. & Damen, K.J. & Faaij, A.P.C., 2006. "Techno-economic prospects of small-scale membrane reactors in a future hydrogen-fuelled transportation sector," Energy, Elsevier, vol. 31(14), pages 2523-2555.
    17. Muhammad Amin & Hamad Hussain Shah & Bilal Bashir & Muhammad Azhar Iqbal & Umer Hameed Shah & Muhammad Umair Ali, 2023. "Environmental Assessment of Hydrogen Utilization in Various Applications and Alternative Renewable Sources for Hydrogen Production: A Review," Energies, MDPI, vol. 16(11), pages 1-25, May.

    More about this item

    Keywords

    Engineering; UCD-ITS-RR-05-06;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt7hf7r2bf. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.