IDEAS home Printed from https://ideas.repec.org/p/cdl/itsdav/qt5zj382t4.html
   My bibliography  Save this paper

Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms

Author

Listed:
  • Lade, Gabriel E
  • Lawell, C-Y Cynthia Lin

Abstract

Policymakers typically favor renewable fuel mandates over taxes and cap and trade programs to reduce greenhouse gas emissions from the transportation sector. Because of delays in the development of commercially viable renewable fuels and important constraints on their use and distribution, fuel mandates are susceptible to sudden increases in compliance costs as policies become more stringent. The authors study the effects and efficiency of two fuel mandates, a renewable share mandate and a carbon intensity standard, as well as the effects of two cost containment provisions, a credit window price and a renewable fuel multiplier. The authors show using a numerical model of the US fuel market that when the mandates are set optimally, they can lead to modest efficiency gains over business as usual; however, when combined optimally with a credit window price, the efficiency of both mandates increases substantially. In contrast, optimally combining a mandate with a renewable fuel multiplier that indirectly relaxes the standard results in only modest efficiency gains over the optimal mandates alone. View the NCST Project Webpage

Suggested Citation

  • Lade, Gabriel E & Lawell, C-Y Cynthia Lin, 2015. "Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms," Institute of Transportation Studies, Working Paper Series qt5zj382t4, Institute of Transportation Studies, UC Davis.
  • Handle: RePEc:cdl:itsdav:qt5zj382t4
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/5zj382t4.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Brian Wright, 2014. "Global Biofuels: Key to the Puzzle of Grain Market Behavior," Journal of Economic Perspectives, American Economic Association, vol. 28(1), pages 73-98, Winter.
    2. Anderson, Soren T., 2012. "The demand for ethanol as a gasoline substitute," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 151-168.
    3. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    4. Pouliot, Sébastien & Babcock, Bruce A., 2014. "The demand for E85: Geographical location and retail capacity constraints," Energy Economics, Elsevier, vol. 45(C), pages 134-143.
    5. Christopher R. Knittel, 2012. "Reducing Petroleum Consumption from Transportation," Journal of Economic Perspectives, American Economic Association, vol. 26(1), pages 93-118, Winter.
    6. Biswo N. Poudel & Krishna P. Paudel & Govinda Timilsina & David Zilberman, 2012. "Providing Numbers for a Food versus Fuel Debate: An Analysis of a Future Biofuel Production Scenario," Applied Economic Perspectives and Policy, Agricultural and Applied Economics Association, vol. 34(4), pages 637-668.
    7. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    8. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    9. Richard Newell & William Pizer & Jiangfeng Zhang, 2005. "Managing Permit Markets to Stabilize Prices," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 31(2), pages 133-157, June.
    10. Dahl, Carol & Duggan, Thomas E., 1996. "U.S. energy product supply elasticities: A survey and application to the U.S. oil market," Resource and Energy Economics, Elsevier, vol. 18(3), pages 243-263, October.
    11. Helfand, Gloria E, 1992. "Erratum: Standards versus Standards: The Effects of Different Pollution Restrictions," American Economic Review, American Economic Association, vol. 82(1), pages 369-369, March.
    12. Yeh, Sonia & Witcover, Julie & Kessler, Jeff, 2013. "Status Review of California's Low Carbon Fuel Standard," Institute of Transportation Studies, Working Paper Series qt7bs689zk, Institute of Transportation Studies, UC Davis.
    13. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    14. Luchansky, Matthew S. & Monks, James, 2009. "Supply and demand elasticities in the U.S. ethanol fuel market," Energy Economics, Elsevier, vol. 31(3), pages 403-410, May.
    15. Hyunok Lee & Daniel A. Sumner, 2010. "International Trade Patterns and Policy for Ethanol in the United States," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 327-345, Springer.
    16. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    17. Chen, Xiaoguang & Huang, Haixiao & Khanna, Madhu & Önal, Hayri, 2014. "Alternative transportation fuel standards: Welfare effects and climate benefits," Journal of Environmental Economics and Management, Elsevier, vol. 67(3), pages 241-257.
    18. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    19. Wright, Brian, 2014. "Global Biofuels: Key to the Puzzle of Grain Market Behavior," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt11715438, Department of Agricultural & Resource Economics, UC Berkeley.
    20. Christopher R. Knittel, 2013. "The Energy-Policy Efficiency Gap: Was There Ever Support for Gasoline Taxes?," NBER Working Papers 18685, National Bureau of Economic Research, Inc.
    21. Carolyn Fischer, 2010. "Renewable Portfolio Standards: When Do They Lower Energy Prices?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 101-120.
    22. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    23. Gilbert E. Metcalf, 2009. "Market-Based Policy Options to Control U.S. Greenhouse Gas Emissions," Journal of Economic Perspectives, American Economic Association, vol. 23(2), pages 5-27, Spring.
    24. Coyle, David & DeBacker, Jason & Prisinzano, Richard, 2012. "Estimating the supply and demand of gasoline using tax data," Energy Economics, Elsevier, vol. 34(1), pages 195-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    2. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    3. Lade, Gabriel E. & Lin, C.-Y. Cynthia & Smith, Aaron, 2015. "Ex Post Costs and Renewable Identification Number (RIN) Prices under the Renewable Fuel Standard," RFF Working Paper Series dp-15-22, Resources for the Future.
    4. Daniel Scheitrum, 2020. "Impact of Intensity Standards on Alternative Fuel Adoption: Renewable Natural Gas and California’s Low Carbon Fuel Standard," The Energy Journal, , vol. 41(2), pages 191-217, March.
    5. Lade, Gabriel & Lin, C.-Y. Cynthia & Smith, Aaron, 2014. "Policy Uncertainty under Market-Based Regulations: Evidence from the Renewable Fuel Standard," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170673, Agricultural and Applied Economics Association.
    6. Scheitrum, Daniel, 2017. "Renewable Natural Gas as a Solution to Climate Goals: Response to California's Low Carbon Fuel Standard," MPRA Paper 77193, University Library of Munich, Germany.
    7. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gabriel E. Lade & C.-Y. Cynthia Lin Lawell, 2021. "The Design of Renewable Fuel Mandates and Cost Containment Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 213-247, June.
    2. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    3. Beaudoin, Justin & Chen, Yuan & Heres, David R. & Kheiravar, Khaled H. & Lade, Gabriel E. & Yi, Fujin & Zhang, Wei & Lin Lawell, C.-Y. Cynthia, 2018. "Environmental Policies in the Transportation Sector: Taxes, Subsidies, Mandates, Restrictions, and Investment," ISU General Staff Papers 201808150700001050, Iowa State University, Department of Economics.
    4. Scheitrum, Daniel, 2017. "Renewable Natural Gas as a Solution to Climate Goals: Response to California's Low Carbon Fuel Standard," MPRA Paper 77193, University Library of Munich, Germany.
    5. Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
    6. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    7. Lade, Gabriel E. & Lin, C.-Y. Cynthia & Smith, Aaron, 2015. "Ex Post Costs and Renewable Identification Number (RIN) Prices under the Renewable Fuel Standard," RFF Working Paper Series dp-15-22, Resources for the Future.
    8. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    9. Korting, Christina & Just, David R., 2017. "Demystifying RINs: A partial equilibrium model of U.S. biofuel markets," Energy Economics, Elsevier, vol. 64(C), pages 353-362.
    10. GianCarlo Moschini & Harvey Lapan & Hyunseok Kim, 2017. "The Renewable Fuel Standard in Competitive Equilibrium: Market and Welfare Effects," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 99(5), pages 1117-1142.
    11. Christina Korting & Harry de Gorter & David R Just, 2019. "Who Will Pay for Increasing Biofuel Mandates? Incidence of the Renewable Fuel Standard Given a Binding Blend Wall," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 101(2), pages 492-506.
    12. Gabriel E. Lade & James Bushnell, 2019. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(3), pages 563-592.
    13. Gabriel E. Lade & James Bushnell, 2016. "Fuel Subsidy Pass-Through and Market Structure: Evidence from the Renewable Fuel Standard," Center for Agricultural and Rural Development (CARD) Publications 16-wp570, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    14. Moschini, GianCarlo & Lapan, Harvey & Kim, Hyunseok, 2016. "The Renewable Fuel Standard: Market and Welfare Effects of Alternative Policy Scenarios," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235721, Agricultural and Applied Economics Association.
    15. Gabriel E Lade & C-Y Cynthia Lin Lawell & Aaron Smith, 2018. "Designing Climate Policy: Lessons from the Renewable Fuel Standard and the Blend Wall," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(2), pages 585-599.
    16. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    17. Madhu Khanna & Xiaoguang Chen & Weiwei Wang & Anthony Oliver, 2022. "Repeal of the Clean Power Plan: Social Cost and Distributional Implications," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 33-51, January.
    18. Zhong, Jia & Khanna, Madhu & Chen, Xiaoguang, 2017. "Going Beyond the Blend Wall: Policy Incentives for Fuel Consumers to Supplement the Renewable Fuel Standard," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258483, Agricultural and Applied Economics Association.
    19. Zhou, Wei & Babcock, Bruce A., 2017. "Using the competitive storage model to estimate the impact of ethanol and fueling investment on corn prices," Energy Economics, Elsevier, vol. 62(C), pages 195-203.
    20. Lade, Gabriel & Lin, C.-Y. Cynthia & Smith, Aaron, 2014. "Policy Uncertainty under Market-Based Regulations: Evidence from the Renewable Fuel Standard," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170673, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsdav:qt5zj382t4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/itucdus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.