IDEAS home Printed from https://ideas.repec.org/a/kap/enreec/v67y2017i4d10.1007_s10640-016-0006-6.html
   My bibliography  Save this article

Escape from Third-Best: Rating Emissions for Intensity Standards

Author

Listed:
  • Derek Lemoine

    (University of Arizona)

Abstract

An increasingly common type of environmental policy instrument regulates the carbon intensity of transportation and electricity markets. In order to extend the policy’s scope beyond point-of-use emissions, regulators assign each potential fuel an emission intensity rating for use in calculating compliance. I show that welfare-maximizing ratings do not generally coincide with the best estimates of actual emissions. In fact, the regulator can achieve a higher level of welfare by properly selecting the emission ratings than possible by selecting only the level of the standard. Moreover, a fuel’s optimal rating can actually decrease when its estimated emission intensity increases. Numerical simulations of the California Low-Carbon Fuel Standard suggest that when recent scientific information increased the estimated emissions from conventional ethanol, regulators should have lowered ethanol’s rating (making it appear less emission-intensive) so that the fuel market would clear with a lower quantity.

Suggested Citation

  • Derek Lemoine, 2017. "Escape from Third-Best: Rating Emissions for Intensity Standards," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 789-821, August.
  • Handle: RePEc:kap:enreec:v:67:y:2017:i:4:d:10.1007_s10640-016-0006-6
    DOI: 10.1007/s10640-016-0006-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10640-016-0006-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10640-016-0006-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Parry, Ian W.H. & Williams, Roberton C., 2011. "Moving U.S. Climate Policy Forward: Are Carbon Taxes the Only Good Alternative?," RFF Working Paper Series dp-11-02, Resources for the Future.
    2. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel & Nathan C. Parker, 2015. "Some Inconvenient Truths about Climate Change Policy: The Distributional Impacts of Transportation Policies," The Review of Economics and Statistics, MIT Press, vol. 97(5), pages 1052-1069, December.
    3. Don Fullerton & Garth Heutel, 2010. "The General Equilibrium Incidence of Environmental Mandates," American Economic Journal: Economic Policy, American Economic Association, vol. 2(3), pages 64-89, August.
    4. Lawrence H. Goulder & Marc A. C. Hafstead & Roberton C. Williams III, 2016. "General Equilibrium Impacts of a Federal Clean Energy Standard," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 186-218, May.
    5. Reyer Gerlagh & Bob van der Zwaan, 2006. "Options and Instruments for a Deep Cut in CO2 Emissions: Carbon Dioxide Capture or Renewables, Taxes or Subsidies?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 25-48.
    6. Fischer, Carolyn & Springborn, Michael, 2011. "Emissions targets and the real business cycle: Intensity targets versus caps or taxes," Journal of Environmental Economics and Management, Elsevier, vol. 62(3), pages 352-366.
    7. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8xv635dc, Institute of Transportation Studies, UC Davis.
    8. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    9. Koehn, Michael & Santomero, Anthony M, 1980. "Regulation of Bank Capital and Portfolio Risk," Journal of Finance, American Finance Association, vol. 35(5), pages 1235-1244, December.
    10. Jonathan E. Hughes & Christopher R. Knittel & Daniel Sperling, 2008. "Evidence of a Shift in the Short-Run Price Elasticity of Gasoline Demand," The Energy Journal, International Association for Energy Economics, vol. 29(1), pages 113-134.
    11. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    12. Helfand, Gloria E, 1991. "Standards versus Standards: The Effects of Different Pollution Restrictions," American Economic Review, American Economic Association, vol. 81(3), pages 622-634, June.
    13. Lapan, Harvey & Moschini, GianCarlo, 2012. "Second-best biofuel policies and the welfare effects of quantity mandates and subsidies," Journal of Environmental Economics and Management, Elsevier, vol. 63(2), pages 224-241.
    14. Stephen P. Holland, 2009. "Taxes and Trading versus Intensity Standards: Second-Best Environmental Policies with Incomplete Regulation (Leakage) or Market Power," NBER Working Papers 15262, National Bureau of Economic Research, Inc.
    15. Searchinger, Timothy & Heimlich, Ralph & Houghton, R. A. & Dong, Fengxia & Elobeid, Amani & Fabiosa, Jacinto F. & Tokgoz, Simla & Hayes, Dermot J. & Yu, Hun-Hsiang, 2008. "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change," Staff General Research Papers Archive 12881, Iowa State University, Department of Economics.
    16. Yeh, Sonia & Witcover, Julie & Kessler, Jeff, 2013. "Status Review of California's Low Carbon Fuel Standard," Institute of Transportation Studies, Working Paper Series qt7bs689zk, Institute of Transportation Studies, UC Davis.
    17. repec:bla:jfinan:v:43:y:1988:i:5:p:1219-33 is not listed on IDEAS
    18. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
    19. Stephen P. Holland & Jonathan E. Hughes & Christopher R. Knittel, 2009. "Greenhouse Gas Reductions under Low Carbon Fuel Standards?," American Economic Journal: Economic Policy, American Economic Association, vol. 1(1), pages 106-146, February.
    20. Richard Plevin & Mark Delucchi & Felix Creutzig, 2014. "Response to Comments on “Using Attributional Life Cycle Assessment to Estimate Climate-Change Mitigation …”," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 468-470, May.
    21. Andress, David & Dean Nguyen, T. & Das, Sujit, 2010. "Low-carbon fuel standard--Status and analytic issues," Energy Policy, Elsevier, vol. 38(1), pages 580-591, January.
    22. Farrell, Alexander E. & Sperling, Dan, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt8ng2h3x7, Institute of Transportation Studies, UC Davis.
    23. Aaron Hatcher, 2007. "Firm behaviour under pollution ratio standards with non-compliance," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 89-98, September.
    24. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    25. Luchansky, Matthew S. & Monks, James, 2009. "Supply and demand elasticities in the U.S. ethanol fuel market," Energy Economics, Elsevier, vol. 31(3), pages 403-410, May.
    26. Hyunok Lee & Daniel A. Sumner, 2010. "International Trade Patterns and Policy for Ethanol in the United States," Natural Resource Management and Policy, in: Madhu Khanna & Jürgen Scheffran & David Zilberman (ed.), Handbook of Bioenergy Economics and Policy, chapter 0, pages 327-345, Springer.
    27. Farrell, Alexander & Sperling, Daniel, 2007. "A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis," Institute of Transportation Studies, Working Paper Series qt5245b5kx, Institute of Transportation Studies, UC Davis.
    28. Rochet, Jean-Charles, 1992. "Capital requirements and the behaviour of commercial banks," European Economic Review, Elsevier, vol. 36(5), pages 1137-1170, June.
    29. Sperling, Daniel & Farrell, Alexander, 2007. "A Low-Carbon Fuel Standard for California, Part 2: Policy Analysis," Institute of Transportation Studies, Working Paper Series qt5hv693r2, Institute of Transportation Studies, UC Davis.
    30. Farrell, Alexander E. & Sperling, Daniel & Brandt, A.R. & Eggert, A. & Farrell, A.E. & Haya, B.K. & Hughes, J. & Jenkins, B.M. & Jones, A.D. & Kammen, D.M. & Knittel, C.R. & Melaina, M.W. & O'Hare, M., 2007. "A Low-Carbon Fuel Standard for California Part 2: Policy Analysis," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt1hm6k089, Institute of Transportation Studies, UC Berkeley.
    31. Hahn, Robert W. & Ulph, Alistair (ed.), 2012. "Climate Change and Common Sense: Essays in Honour of Tom Schelling," OUP Catalogue, Oxford University Press, number 9780199692873.
    32. Park, Sung Y. & Zhao, Guochang, 2010. "An estimation of U.S. gasoline demand: A smooth time-varying cointegration approach," Energy Economics, Elsevier, vol. 32(1), pages 110-120, January.
    33. Udo Ebert, 1998. "Relative standards: A positive and normative analysis," Journal of Economics, Springer, vol. 67(1), pages 17-38, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rudik, Ivan, 2018. "Tradable credit markets for intensity standards," Economic Modelling, Elsevier, vol. 72(C), pages 202-215.
    2. Hoarau, Quentin & Meunier, Guy, 2023. "Coordination of sectoral climate policies and life cycle emissions," Resource and Energy Economics, Elsevier, vol. 72(C).
    3. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    4. Lawrence H. Goulder & Marc A. C. Hafstead & Roberton C. Williams III, 2016. "General Equilibrium Impacts of a Federal Clean Energy Standard," American Economic Journal: Economic Policy, American Economic Association, vol. 8(2), pages 186-218, May.
    5. Gabriel E Lade & C -Y Cynthia Lin Lawell & Aaron Smith, 2018. "Policy Shocks and Market-Based Regulations: Evidence from the Renewable Fuel Standard," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 100(3), pages 707-731.
    6. Harrison Fell & Daniel Kaffine & Daniel Steinberg, 2017. "Energy Efficiency and Emissions Intensity Standards," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 201-226.
    7. Lade, Gabriel E & Lawell, C-Y Cynthia Lin, 2015. "Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms," Institute of Transportation Studies, Working Paper Series qt5zj382t4, Institute of Transportation Studies, UC Davis.
    8. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    9. Lade, Gabriel & Lin, C.-Y. Cynthia & Smith, Aaron, 2014. "Policy Uncertainty under Market-Based Regulations: Evidence from the Renewable Fuel Standard," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170673, Agricultural and Applied Economics Association.
    10. Gabriel E. Lade & C.-Y. Cynthia Lin Lawell, 2021. "The Design of Renewable Fuel Mandates and Cost Containment Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 213-247, June.
    11. Bielen, David A., 2018. "Do differentiated performance standards help coal? CO2 policy in the U.S. electricity sector," Resource and Energy Economics, Elsevier, vol. 53(C), pages 79-100.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yeh, Sonia & Witcover, Julie & Lade, Gabriel E. & Sperling, Daniel, 2016. "A review of low carbon fuel policies: Principles, program status and future directions," Energy Policy, Elsevier, vol. 97(C), pages 220-234.
    2. Holland, Stephen P., 2012. "Emissions taxes versus intensity standards: Second-best environmental policies with incomplete regulation," Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 375-387.
    3. Huseynov, Samir & Palma, Marco A., 2018. "Does California’s LCFS Reduce CO2 Emissions?," 2018 Annual Meeting, August 5-7, Washington, D.C. 274200, Agricultural and Applied Economics Association.
    4. Becker, Jonathon M., 2023. "Tradable performance standards in a dynamic context," Resource and Energy Economics, Elsevier, vol. 73(C).
    5. Lade, Gabriel E. & Lin Lawell, C.-Y. Cynthia, 2015. "The design and economics of low carbon fuel standards," Research in Transportation Economics, Elsevier, vol. 52(C), pages 91-99.
    6. Rubin, Jonathan & Leiby, Paul N., 2013. "Tradable credits system design and cost savings for a national low carbon fuel standard for road transport," Energy Policy, Elsevier, vol. 56(C), pages 16-28.
    7. Wang, Banban & Pizer, William A. & Munnings, Clayton, 2022. "Price limits in a tradable performance standard," Journal of Environmental Economics and Management, Elsevier, vol. 116(C).
    8. Axsen, Jonn & Wolinetz, Michael, 2023. "What does a low-carbon fuel standard contribute to a policy mix? An interdisciplinary review of evidence and research gaps," Transport Policy, Elsevier, vol. 133(C), pages 54-63.
    9. Gabriel E. Lade & C.-Y. Cynthia Lin Lawell, 2021. "The Design of Renewable Fuel Mandates and Cost Containment Mechanisms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 79(2), pages 213-247, June.
    10. Bento, Antonio M. & Garg, Teevrat & Kaffine, Daniel, 2018. "Emissions reductions or green booms? General equilibrium effects of a renewable portfolio standard," Journal of Environmental Economics and Management, Elsevier, vol. 90(C), pages 78-100.
    11. Leighty, Wayne & Ogden, Joan M. & Yang, Christopher, 2012. "Modeling transitions in the California light-duty vehicles sector to achieve deep reductions in transportation greenhouse gas emissions," Energy Policy, Elsevier, vol. 44(C), pages 52-67.
    12. Lade, Gabriel E & Lawell, C-Y Cynthia Lin, 2015. "Mandating green: On the Design of Renewable Fuel Policies and Cost Containment Mechanisms," Institute of Transportation Studies, Working Paper Series qt5zj382t4, Institute of Transportation Studies, UC Davis.
    13. Plevin, Richard J. & Delucchi, Mark A. & O’Hare, Michael, 2017. "Fuel carbon intensity standards may not mitigate climate change," Energy Policy, Elsevier, vol. 105(C), pages 93-97.
    14. Tittmann, P.W. & Parker, N.C. & Hart, Q.J. & Jenkins, B.M., 2010. "A spatially explicit techno-economic model of bioenergy and biofuels production in California," Journal of Transport Geography, Elsevier, vol. 18(6), pages 715-728.
    15. Yongxi (Eric) Huang & Yueyue Fan & Chien-Wei Chen, 2014. "An Integrated Biofuel Supply Chain to Cope with Feedstock Seasonality and Uncertainty," Transportation Science, INFORMS, vol. 48(4), pages 540-554, November.
    16. Azadeh Maroufmashat & Michael Fowler, 2017. "Transition of Future Energy System Infrastructure; through Power-to-Gas Pathways," Energies, MDPI, vol. 10(8), pages 1-22, July.
    17. Fan, Yueyue & Huang, Yongxi & Chen, Chien-Wei, 2012. "Multistage Infrastructure System Design: An Integrated Biofuel Supply Chain against Feedstock Seasonality and Uncertainty," Institute of Transportation Studies, Working Paper Series qt9g8413m5, Institute of Transportation Studies, UC Davis.
    18. Fischer, Carolyn & Salant, Stephen W., 2017. "Balancing the carbon budget for oil: The distributive effects of alternative policies," European Economic Review, Elsevier, vol. 99(C), pages 191-215.
    19. repec:clg:wpaper:2014-01 is not listed on IDEAS
    20. Gang Tian & Jian Shi & Licheng Sun & Xingle Long & Benhai Guo, 2017. "Dynamic changes in the energy–carbon performance of Chinese transportation sector: a meta-frontier non-radial directional distance function approach," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 89(2), pages 585-607, November.
    21. Milazzo, M.F. & Spina, F. & Cavallaro, S. & Bart, J.C.J., 2013. "Sustainable soy biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 806-852.

    More about this item

    Keywords

    Externality; Emission; Intensity; Rating; Second-best; Ethanol;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:enreec:v:67:y:2017:i:4:d:10.1007_s10640-016-0006-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.