IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i2p523-d199215.html
   My bibliography  Save this article

Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network

Author

Listed:
  • Wei Yu

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing 210037, China)

  • Jun Chen

    (School of Transportation, Southeast University, Si Pai Lou 2#, Nanjing 210096, China)

  • Xingchen Yan

    (College of Automobile and Traffic Engineering, Nanjing Forestry University, Longpan Road 159#, Nanjing 210037, China)

Abstract

Many cities in China have opened a subway, which has become an important part of urban public transport. How the metro line forms the metro network, and then changes the urban traffic pattern, is a problem worthy of attention. From 2005 to 2018, 10 metro lines were opened in Nanjing, which provides important reference data for the study of the spatial and temporal evolution of the Metro network. In this study, using the complex network method, according to the opening sequence of 10 metro lines in Nanjing, space L and space P models are established, respectively. In view of the evolution of metro network parameters, four parameters—network density, network centrality, network clustering coefficient, and network average distance—are proposed for evaluation. In view of the spatial structure change of the metro network, this study combines the concept of node degree in a complex network, analyzes the starting point, terminal point, and intersection point of metro line, and puts forward the concepts of star structure and ring structure. The analysis of the space‒time evolution of Nanjing metro network shows that with the gradual opening of metro lines, the metro network presents a more complex structure; the line connection tends to important nodes, and gradually outlines the city’s commercial space pattern.

Suggested Citation

  • Wei Yu & Jun Chen & Xingchen Yan, 2019. "Space‒Time Evolution Analysis of the Nanjing Metro Network Based on a Complex Network," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:523-:d:199215
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/2/523/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/2/523/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ailing Huang & Jie Xiong & Jinsheng Shen & Wei Guan, 2016. "Evolution of weighted complex bus transit networks with flow," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 27(06), pages 1-17, June.
    2. Xiaolei Ma & Haiyang Yu & Yunpeng Wang & Yinhai Wang, 2015. "Large-Scale Transportation Network Congestion Evolution Prediction Using Deep Learning Theory," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-17, March.
    3. An, Xin-lei & Zhang, Li & Li, Yin-zhen & Zhang, Jian-gang, 2014. "Synchronization analysis of complex networks with multi-weights and its application in public traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 412(C), pages 149-156.
    4. Wandelt, Sebastian & Sun, Xiaoqian, 2015. "Evolution of the international air transportation country network from 2002 to 2013," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 82(C), pages 55-78.
    5. Juliane Manitz & Jonas Harbering & Marie Schmidt & Thomas Kneib & Anita Schöbel, 2017. "Source estimation for propagation processes on complex networks with an application to delays in public transportation systems," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(3), pages 521-536, April.
    6. Xiaohong Chen & Xiang Wang & Hua Zhang & Jia Li, 2014. "The Diversity and Evolution Process of Bus System Performance in Chinese Cities: An Empirical Study," Sustainability, MDPI, vol. 6(11), pages 1-17, November.
    7. Rui Ding & Norsidah Ujang & Hussain bin Hamid & Jianjun Wu, 2015. "Complex Network Theory Applied to the Growth of Kuala Lumpur’s Public Urban Rail Transit Network," PLOS ONE, Public Library of Science, vol. 10(10), pages 1-22, October.
    8. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Yu & Xiaofei Ye & Jun Chen & Xingchen Yan & Tao Wang, 2020. "Evaluation Indexes and Correlation Analysis of Origination–Destination Travel Time of Nanjing Metro Based on Complex Network Method," Sustainability, MDPI, vol. 12(3), pages 1-21, February.
    2. Yangyang Meng & Qingjie Qi & Jianzhong Liu & Wei Zhou, 2022. "Dynamic Evolution Analysis of Complex Topology and Node Importance in Shenzhen Metro Network from 2004 to 2021," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    3. Ma, Min & Hu, Dawei & Chien, Steven I-Jy & Liu, Jie & Yang, Xing & Ma, Zhuanglin, 2022. "Evolution assessment of urban rail transit networks: A case study of Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    4. Wei Yu & Hua Bai & Jun Chen & Xingchen Yan, 2019. "Analysis of Space-Time Variation of Passenger Flow and Commuting Characteristics of Residents Using Smart Card Data of Nanjing Metro," Sustainability, MDPI, vol. 11(18), pages 1-19, September.
    5. Elisa Frutos Bernal & Angel Martín del Rey, 2019. "Study of the Structural and Robustness Characteristics of Madrid Metro Network," Sustainability, MDPI, vol. 11(12), pages 1-24, June.
    6. Jungyeol Hong & Reuben Tamakloe & Soobeom Lee & Dongjoo Park, 2019. "Exploring the Topological Characteristics of Complex Public Transportation Networks: Focus on Variations in Both Single and Integrated Systems in the Seoul Metropolitan Area," Sustainability, MDPI, vol. 11(19), pages 1-26, September.
    7. Wei Yu & Tao Wang & Yujie Xiao & Jun Chen & Xingchen Yan, 2020. "A Carbon Emission Measurement Method for Individual Travel Based on Transportation Big Data: The Case of Nanjing Metro," IJERPH, MDPI, vol. 17(16), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu Wei & Sun Ning, 2018. "Establishment and Analysis of the Supernetwork Model for Nanjing Metro Transportation System," Complexity, Hindawi, vol. 2018, pages 1-11, December.
    2. Shiguang Wang & Dexin Yu & Mei-Po Kwan & Huxing Zhou & Yongxing Li & Hongzhi Miao, 2019. "The Evolution and Growth Patterns of the Road Network in a Medium-Sized Developing City: A Historical Investigation of Changchun, China, from 1912 to 2017," Sustainability, MDPI, vol. 11(19), pages 1-25, September.
    3. Cats, Oded & Hijner, Anne Mijntje, 2021. "Quantifying the cascading effects of passenger delays," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Shuanfeng Zhao & Chao Wang & Pei Wei & Qingqing Zhao, 2020. "Research on the Deep Recognition of Urban Road Vehicle Flow Based on Deep Learning," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    5. Wang, Zhiru & Niu, Fangyan & Yang, Lili & Su, Guofeng, 2020. "Modeling a subway network: A hot-point attraction-driven evolution mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 537(C).
    6. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Kaffash, Sepideh & Nguyen, An Truong & Zhu, Joe, 2021. "Big data algorithms and applications in intelligent transportation system: A review and bibliometric analysis," International Journal of Production Economics, Elsevier, vol. 231(C).
    8. Lei, Da & Cheng, Long & Wang, Pengfei & Chen, Xuewu & Zhang, Lin, 2024. "Identifying service bottlenecks in public bikesharing flow networks," Journal of Transport Geography, Elsevier, vol. 116(C).
    9. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    10. Wen, Tao & Jiang, Wen, 2018. "An information dimension of weighted complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 388-399.
    11. Li, Siping & Zhou, Yaoming & Kundu, Tanmoy & Sheu, Jiuh-Biing, 2021. "Spatiotemporal variation of the worldwide air transportation network induced by COVID-19 pandemic in 2020," Transport Policy, Elsevier, vol. 111(C), pages 168-184.
    12. Güner, Samet & Antunes, Jorge Junio Moreira & Seçkin Codal, Keziban & Wanke, Peter, 2024. "Network centrality driven airport efficiency: A weight-restricted network DEA," Journal of Air Transport Management, Elsevier, vol. 116(C).
    13. Muhammad Aqib & Rashid Mehmood & Ahmed Alzahrani & Iyad Katib & Aiiad Albeshri & Saleh M. Altowaijri, 2019. "Rapid Transit Systems: Smarter Urban Planning Using Big Data, In-Memory Computing, Deep Learning, and GPUs," Sustainability, MDPI, vol. 11(10), pages 1-33, May.
    14. Gangwal, Utkarsh & Singh, Mayank & Pandey, Pradumn Kumar & Kamboj, Deepak & Chatterjee, Samrat & Bhatia, Udit, 2022. "Identifying early-warning indicators of onset of sudden collapse in networked infrastructure systems against sequential disruptions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 591(C).
    15. Shi, Jinyao & Zhou, Peipei & Cai, Shuiming & Jia, Qiang, 2023. "Exponential synchronization for multi-weighted dynamic networks via finite-level quantized control with adaptive scaling gain," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Zhang, Shuaishuai & Wu, Libo & Zhou, Yang, 2020. "The impact of negative list policy on sectoral structure: Based on complex network and DID analysis," Applied Energy, Elsevier, vol. 278(C).
    17. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    18. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    19. Wang, Jiaoe & Xiao, Fan & Dobruszkes, Frédéric & Wang, Wei, 2023. "Seasonality of flights in China: Spatial heterogeneity and its determinants," Journal of Air Transport Management, Elsevier, vol. 108(C).
    20. Zhang, Qi & Luo, Chuanhai & Li, Meizhu & Deng, Yong & Mahadevan, Sankaran, 2015. "Tsallis information dimension of complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 707-717.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:2:p:523-:d:199215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.