IDEAS home Printed from https://ideas.repec.org/p/cdl/agrebk/qt9183b502.html
   My bibliography  Save this paper

Achieving an 80% Carbon Free Electricity System in China by 2035

Author

Listed:
  • Abhyankar, Nikit
  • Lin, Jiang
  • Kahrl, Fredrich
  • Yin, Shengfei
  • Paliwal, Umed
  • Liu, Xu
  • Khanna, Nina
  • Phadke, Amol A
  • Luo, Qian

Abstract

Dramatic reductions in solar, wind, and battery storage costs create new opportunities to reduce emissions and costs in China’s electricity sector, beyond current policy goals. This study examines the cost, reliability, emissions, public health, and employment implications of increasing the share of non-fossil fuel (“carbon free”) electricity generation in China to 80% by 2035. The analysis uses state-of-the-art modeling with high resolution load, wind, and solar inputs. The study finds that achieving an 80% carbon free electricity system in China by 2035 could reduce wholesale electricity costs, relative to a current policy baseline, while maintaining high levels of reliability, reducing deaths from air pollution, and increasing employment. In our 80% scenario, wind and solar generation capacity reach 3 TW and battery storage capacity reaches 0.4 TW by 2035, implying a rapid scale up in these resources that will require changes in policy targets, markets and regulation, and land use policies.

Suggested Citation

  • Abhyankar, Nikit & Lin, Jiang & Kahrl, Fredrich & Yin, Shengfei & Paliwal, Umed & Liu, Xu & Khanna, Nina & Phadke, Amol A & Luo, Qian, 2022. "Achieving an 80% Carbon Free Electricity System in China by 2035," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt9183b502, Department of Agricultural & Resource Economics, UC Berkeley.
  • Handle: RePEc:cdl:agrebk:qt9183b502
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/9183b502.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Levin, Todd & Botterud, Audun, 2015. "Electricity market design for generator revenue sufficiency with increased variable generation," Energy Policy, Elsevier, vol. 87(C), pages 392-406.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kahrl, Fritz & Lin, Jiang, 2024. "Changing economics of China’s power system suggest that batteries and renewables may be a lower cost way to meet peak demand growth than coal," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt83v0m2zw, Department of Agricultural & Resource Economics, UC Berkeley.
    2. Lin, Boqiang & Xu, Chongchong, 2024. "The effects of industrial robots on firm energy intensity: From the perspective of technological innovation and electrification," Technological Forecasting and Social Change, Elsevier, vol. 203(C).
    3. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    4. Wu, Di & Zhang, Yuqian & Liu, Bo & Wang, Keke & Wang, Zijing & Kang, Junjie, 2024. "Optimization of coal power phaseout pathways ensuring energy security: Evidence from Shandong, China's largest coal power province," Energy Policy, Elsevier, vol. 192(C).
    5. Park, Musik & Wang, Zhiyuan & Li, Lanyu & Wang, Xiaonan, 2023. "Multi-objective building energy system optimization considering EV infrastructure," Applied Energy, Elsevier, vol. 332(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jenkins, J.D. & Zhou, Z. & Ponciroli, R. & Vilim, R.B. & Ganda, F. & de Sisternes, F. & Botterud, A., 2018. "The benefits of nuclear flexibility in power system operations with renewable energy," Applied Energy, Elsevier, vol. 222(C), pages 872-884.
    2. Mills, Andrew & Wiser, Ryan & Millstein, Dev & Carvallo, Juan Pablo & Gorman, Will & Seel, Joachim & Jeong, Seongeun, 2021. "The impact of wind, solar, and other factors on the decline in wholesale power prices in the United States," Applied Energy, Elsevier, vol. 283(C).
    3. Zappa, William & Junginger, Martin & van den Broek, Machteld, 2021. "Can liberalised electricity markets support decarbonised portfolios in line with the Paris Agreement? A case study of Central Western Europe," Energy Policy, Elsevier, vol. 149(C).
    4. Mills, Andrew D. & Levin, Todd & Wiser, Ryan & Seel, Joachim & Botterud, Audun, 2020. "Impacts of variable renewable energy on wholesale markets and generating assets in the United States: A review of expectations and evidence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    6. Benatia, David, 2022. "Ring the alarm! Electricity markets, renewables, and the pandemic," Energy Economics, Elsevier, vol. 106(C).
    7. Mallapragada, Dharik S. & Papageorgiou, Dimitri J. & Venkatesh, Aranya & Lara, Cristiana L. & Grossmann, Ignacio E., 2018. "Impact of model resolution on scenario outcomes for electricity sector system expansion," Energy, Elsevier, vol. 163(C), pages 1231-1244.
    8. Anthony Papavasiliou & Yves Smeers, 2017. "Remuneration of Flexibility using Operating Reserve Demand Curves: A Case Study of Belgium," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
    9. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    10. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    11. Chi Kong Chyong & Michael Pollitt & Reuben Cruise, 2019. "Can wholesale electricity prices support "subsidy-free" generation investment in Europe?," Working Papers EPRG1919, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    12. Anwar, Muhammad Bashar & Guo, Nongchao & Sun, Yinong & Frew, Bethany, 2024. "Can wholesale electricity markets achieve resource adequacy and high clean energy generation targets in the presence of self-interested actors?," Applied Energy, Elsevier, vol. 359(C).
    13. Changgi Min, 2020. "Impact Analysis of Transmission Congestion on Power System Flexibility in Korea," Energies, MDPI, vol. 13(9), pages 1-11, May.
    14. Brouwer, Anne Sjoerd & van den Broek, Machteld & Özdemir, Özge & Koutstaal, Paul & Faaij, André, 2016. "Business case uncertainty of power plants in future energy systems with wind power," Energy Policy, Elsevier, vol. 89(C), pages 237-256.
    15. Mai, Trieu & Bistline, John & Sun, Yinong & Cole, Wesley & Marcy, Cara & Namovicz, Chris & Young, David, 2018. "The role of input assumptions and model structures in projections of variable renewable energy: A multi-model perspective of the U.S. electricity system," Energy Economics, Elsevier, vol. 76(C), pages 313-324.
    16. Sreekumar, Sreenu & Yamujala, Sumanth & Sharma, Kailash Chand & Bhakar, Rohit & Simon, Sishaj P. & Rana, Ankur Singh, 2022. "Flexible Ramp Products: A solution to enhance power system flexibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Fang, Xichen & Guo, Hongye & Zheng, Kedi & Liu, Shuangquan & Chen, Qixin, 2024. "Real-time capacity cost obligations design in high-renewables energy markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    18. Frew, Bethany & Brinkman, Greg & Denholm, Paul & Narwade, Vinayak & Stephen, Gord & Bloom, Aaron & Lau, Jessica, 2021. "Impact of operating reserve rules on electricity prices with high penetrations of renewable energy," Energy Policy, Elsevier, vol. 156(C).
    19. Lynch, Muireann Á. & Longoria, Genora & Curtis, John, 2021. "Future market design options for electricity markets with high RES-E: lessons from the Irish Single Electricity Market," Papers WP702, Economic and Social Research Institute (ESRI).
    20. Bajo-Buenestado, Raúl, 2021. "Operating reserve demand curve, scarcity pricing and intermittent generation: Lessons from the Texas ERCOT experience," Energy Policy, Elsevier, vol. 149(C).

    More about this item

    Keywords

    Environmental Sciences; Environmental Management; Affordable and Clean Energy; Energy Modelling; Energy management; Energy policy; Energy resources; Energy sustainability;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:agrebk:qt9183b502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/dabrkus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.