IDEAS home Printed from https://ideas.repec.org/p/cca/wpaper/264.html
   My bibliography  Save this paper

Mortality Surface by Means of Continuous Time Cohort Models

Author

Listed:
  • Petar Jevtic
  • Elisa Luciano
  • Elena Vigna

Abstract

We study and calibrate a cohort-based model which captures the characteristics of a mortality surface with a parsimonious, continuous-time fac- tor approach. The model allows for imperfect correlation of mortality intensity across generations. It is implemented on UK data for the period 1900-2008. Calibration by means of stochastic search and the Differential Evolution opti- mization algorithm proves to yield robust and stable parameters. We provide in-sample and out-of-sample, deterministic as well as stochastic forecasts. Cal- ibration confirms that correlation across generations is smaller than one.

Suggested Citation

  • Petar Jevtic & Elisa Luciano & Elena Vigna, 2012. "Mortality Surface by Means of Continuous Time Cohort Models," Carlo Alberto Notebooks 264, Collegio Carlo Alberto, revised 2013.
  • Handle: RePEc:cca:wpaper:264
    as

    Download full text from publisher

    File URL: https://www.carloalberto.org/wp-content/uploads/2018/11/no.264.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    2. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    3. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    4. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    5. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    6. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    7. Manfred Gilli & Enrico Schumann, 2012. "Heuristic optimisation in financial modelling," Annals of Operations Research, Springer, vol. 193(1), pages 129-158, March.
    8. Ardia, David & Ospina, Juan & Giraldo, Giraldo, 2010. "Jump-Diffusion Calibration using Differential Evolution," MPRA Paper 26184, University Library of Munich, Germany, revised 25 Oct 2010.
    9. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    10. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    12. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    13. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    2. Man Chung Fung & Katja Ignatieva & Michael Sherris, 2015. "Managing Systematic Mortality Risk in Life Annuities: An Application of Longevity Derivatives," Papers 1508.00090, arXiv.org.
    3. Cupido, Kyran & Jevtić, Petar & Paez, Antonio, 2020. "Spatial patterns of mortality in the United States: A spatial filtering approach," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 28-38.
    4. Yajing Xu & Michael Sherris & Jonathan Ziveyi, 2020. "Market Price of Longevity Risk for a Multi‐Cohort Mortality Model With Application to Longevity Bond Option Pricing," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(3), pages 571-595, September.
    5. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    6. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    7. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    8. Yang Chang & Michael Sherris, 2018. "Longevity Risk Management and the Development of a Value-Based Longevity Index," Risks, MDPI, vol. 6(1), pages 1-20, February.
    9. Daniel H. Alai & Katja Ignatieva & Michael Sherris, 2019. "The Investigation of a Forward-Rate Mortality Framework," Risks, MDPI, vol. 7(2), pages 1-22, June.
    10. Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
    11. Hainaut, Donatien, 2022. "A calendar year mortality model in continuous time," LIDAM Discussion Papers ISBA 2022019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    12. De Rosa, Clemente & Luciano, Elisa & Regis, Luca, 2021. "Geographical Diversification And Longevity Risk Mitigation In Annuity Portfolios," ASTIN Bulletin, Cambridge University Press, vol. 51(2), pages 375-410, May.
    13. Milevsky, Moshe A., 2020. "Calibrating Gompertz in reverse: What is your longevity-risk-adjusted global age?," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 147-161.
    14. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    15. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    16. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    17. Fadoua Zeddouk & Pierre Devolder, 2020. "Longevity Modelling and Pricing under a Dependent Multi-Cohort Framework," Risks, MDPI, vol. 8(4), pages 1-23, November.
    18. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    19. Zhiping Huang & Michael Sherris & Andrés M. Villegas & Jonathan Ziveyi, 2022. "Modelling USA Age-Cohort Mortality: A Comparison of Multi-Factor Affine Mortality Models," Risks, MDPI, vol. 10(9), pages 1-28, September.
    20. Elisa Luciano & Luca Regis, 2012. "Demographic risk transfer: is it worth for annuity providers?," ICER Working Papers 11-2012, ICER - International Centre for Economic Research.
    21. Luca Regis, 2014. "Demographic uncertainty, the financing mix and the sustainability of welfare systems," Working Papers SWITCH 02-2014, Competitività, Regole, Mercati (CERM).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    4. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    5. Tsai, Jeffrey T. & Wang, Jennifer L. & Tzeng, Larry Y., 2010. "On the optimal product mix in life insurance companies using conditional value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 235-241, February.
    6. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    7. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    8. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    9. Shen, Yang & Siu, Tak Kuen, 2013. "Longevity bond pricing under stochastic interest rate and mortality with regime-switching," Insurance: Mathematics and Economics, Elsevier, vol. 52(1), pages 114-123.
    10. Chen, Bingzheng & Zhang, Lihong & Zhao, Lin, 2010. "On the robustness of longevity risk pricing," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 358-373, December.
    11. Bravo, Jorge M. & Nunes, João Pedro Vidal, 2021. "Pricing longevity derivatives via Fourier transforms," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 81-97.
    12. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    13. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    14. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.
    15. Date, P. & Mamon, R. & Jalen, L. & Wang, I.C., 2010. "A linear algebraic method for pricing temporary life annuities and insurance policies," Insurance: Mathematics and Economics, Elsevier, vol. 47(1), pages 98-104, August.
    16. Apicella, Giovanna & Dacorogna, Michel M, 2016. "A General framework for modelling mortality to better estimate its relationship with interest rate risks," MPRA Paper 75788, University Library of Munich, Germany.
    17. Luciano, Elisa & Spreeuw, Jaap & Vigna, Elena, 2008. "Modelling stochastic mortality for dependent lives," Insurance: Mathematics and Economics, Elsevier, vol. 43(2), pages 234-244, October.
    18. Deelstra, Griselda & Grasselli, Martino & Van Weverberg, Christopher, 2016. "The role of the dependence between mortality and interest rates when pricing Guaranteed Annuity Options," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 205-219.
    19. Zeddouk, Fadoua & Devolder, Pierre, 2019. "Mean reversion in stochastic mortality : why and how?," LIDAM Discussion Papers ISBA 2019018, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    20. Kira Henshaw & Corina Constantinescu & Olivier Menoukeu Pamen, 2020. "Stochastic Mortality Modelling for Dependent Coupled Lives," Risks, MDPI, vol. 8(1), pages 1-28, February.

    More about this item

    Keywords

    stochastic mortality; age effect; cohort effect; differential evolution algorithm; mortality forecasting.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C38 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Classification Methdos; Cluster Analysis; Principal Components; Factor Analysis
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cca:wpaper:264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Giovanni Bert (email available below). General contact details of provider: https://edirc.repec.org/data/fccaait.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.