IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v96y2021icp1-14.html
   My bibliography  Save this article

Volterra mortality model: Actuarial valuation and risk management with long-range dependence

Author

Listed:
  • Wang, Ling
  • Chiu, Mei Choi
  • Wong, Hoi Ying

Abstract

While abundant empirical studies support the long-range dependence (LRD) of mortality rates, the corresponding impact on mortality securities is largely unknown due to the lack of appropriate tractable models for valuation and risk management purposes. We propose a novel class of Volterra mortality models that incorporate LRD into the actuarial valuation, retain tractability, and are consistent with the existing continuous-time affine mortality models. We derive the survival probability in closed-form solution by taking into account of the historical health records. The flexibility and tractability of the models make them useful in valuing mortality-related products such as death benefits, annuities, longevity bonds, and many others, as well as offering optimal mean–variance mortality hedging rules. Numerical studies are conducted to examine the effect of incorporating LRD into mortality rates on various insurance products and hedging efficiency.

Suggested Citation

  • Wang, Ling & Chiu, Mei Choi & Wong, Hoi Ying, 2021. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 1-14.
  • Handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:1-14
    DOI: 10.1016/j.insmatheco.2020.10.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668720301347
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2020.10.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
    2. Tat Wing Wong & Mei Choi Chiu & Hoi Ying Wong, 2017. "Managing Mortality Risk With Longevity Bonds When Mortality Rates Are Cointegrated," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 987-1023, September.
    3. David Blake & Andrew Cairns & Kevin Dowd & Richard MacMinn, 2006. "Longevity Bonds: Financial Engineering, Valuation, and Hedging," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 647-672, December.
    4. Baudoin, Fabrice & Nualart, David, 2003. "Equivalence of Volterra processes," Stochastic Processes and their Applications, Elsevier, vol. 107(2), pages 327-350, October.
    5. Biffis, Enrico, 2005. "Affine processes for dynamic mortality and actuarial valuations," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 443-468, December.
    6. Darrell Duffie & Jun Pan & Kenneth Singleton, 2000. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
    7. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    8. Yan, Hongxuan & Peters, Gareth W. & Chan, Jennifer S.K., 2020. "Multivariate Long-Memory Cohort Mortality Models," ASTIN Bulletin, Cambridge University Press, vol. 50(1), pages 223-263, January.
    9. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    10. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    11. Yige Wang & Nan Zhang & Zhuo Jin & Tin Long Ho, 2019. "Pricing longevity-linked derivatives using a stochastic mortality model," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(24), pages 5923-5942, December.
    12. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    13. OlaOluwa S. Yaya & Luis A. Gil-Alana & Acheampong Y. Amoateng, 2019. "Under-5 Mortality Rates in G7 Countries: Analysis of Fractional Persistence, Structural Breaks and Nonlinear Time Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 675-694, October.
    14. Blackburn, Craig & Sherris, Michael, 2013. "Consistent dynamic affine mortality models for longevity risk applications," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 64-73.
    15. Schrager, David F., 2006. "Affine stochastic mortality," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 81-97, February.
    16. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    17. Andrés Villegas & Steven Haberman, 2014. "On the Modeling and Forecasting of Socioeconomic Mortality Differentials: An Application to Deprivation and Mortality in England," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 168-193.
    18. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    19. Shuo-Li Chuang & Patrick Brockett, 2014. "Modeling and Pricing Longevity Derivatives Using Stochastic Mortality Rates and the Esscher Transform," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 22-37.
    20. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    21. Milevsky, Moshe A. & David Promislow, S., 2001. "Mortality derivatives and the option to annuitise," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 299-318, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2021. "Time-consistent mean-variance reinsurance-investment problem with long-range dependent mortality rate," Papers 2112.06602, arXiv.org.
    3. Wang, Ling & Wong, Hoi Ying, 2021. "Time-consistent longevity hedging with long-range dependence," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 25-41.
    4. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    5. Bernardino Adão & André Silva, 2022. "The labor share and the monetary transmission," Working Papers w202218, Banco de Portugal, Economics and Research Department.
    6. Xiaobai Zhu & Kenneth Q. Zhou & Zijia Wang, 2024. "A new paradigm of mortality modeling via individual vitality dynamics," Papers 2407.15388, arXiv.org, revised Oct 2024.
    7. Yan, Tingjin & Park, Kyunghyun & Wong, Hoi Ying, 2022. "Irreversible reinsurance: A singular control approach," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 326-348.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ling Wang & Mei Choi Chiu & Hoi Ying Wong, 2020. "Volterra mortality model: Actuarial valuation and risk management with long-range dependence," Papers 2009.09572, arXiv.org.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Zhou, Hongjuan & Zhou, Kenneth Q. & Li, Xianping, 2022. "Stochastic mortality dynamics driven by mixed fractional Brownian motion," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 218-238.
    4. Jevtić, Petar & Regis, Luca, 2019. "A continuous-time stochastic model for the mortality surface of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 181-195.
    5. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    6. Cupido, Kyran & Jevtić, Petar & Paez, Antonio, 2020. "Spatial patterns of mortality in the United States: A spatial filtering approach," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 28-38.
    7. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    8. Petar Jevtić & Luca Regis, 2021. "A Square-Root Factor-Based Multi-Population Extension of the Mortality Laws," Mathematics, MDPI, vol. 9(19), pages 1-17, September.
    9. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    10. Jevtić, Petar & Luciano, Elisa & Vigna, Elena, 2013. "Mortality surface by means of continuous time cohort models," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 122-133.
    11. Fadoua Zeddouk & Pierre Devolder, 2020. "Longevity Modelling and Pricing under a Dependent Multi-Cohort Framework," Risks, MDPI, vol. 8(4), pages 1-23, November.
    12. LUCIANO, Elisa & VIGNA, Elena, 2008. "Mortality risk via affine stochastic intensities: calibration and empirical relevance," MPRA Paper 59627, University Library of Munich, Germany.
    13. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    14. Tsai, Jeffrey T. & Wang, Jennifer L. & Tzeng, Larry Y., 2010. "On the optimal product mix in life insurance companies using conditional value at risk," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 235-241, February.
    15. Russo, Vincenzo & Giacometti, Rosella & Ortobelli, Sergio & Rachev, Svetlozar & Fabozzi, Frank J., 2011. "Calibrating affine stochastic mortality models using term assurance premiums," Insurance: Mathematics and Economics, Elsevier, vol. 49(1), pages 53-60, July.
    16. Huang, H. & Milevsky, M.A. & Salisbury, T.S., 2017. "Retirement spending and biological age," Journal of Economic Dynamics and Control, Elsevier, vol. 84(C), pages 58-76.
    17. De Rosa, Clemente & Luciano, Elisa & Regis, Luca, 2021. "Geographical Diversification And Longevity Risk Mitigation In Annuity Portfolios," ASTIN Bulletin, Cambridge University Press, vol. 51(2), pages 375-410, May.
    18. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    19. Virginia R. Young, 2007. "Pricing Life Insurance under Stochastic Mortality via the Instantaneous Sharpe Ratio: Theorems and Proofs," Papers 0705.1297, arXiv.org.
    20. Anastasia Novokreshchenova, 2016. "Predicting Human Mortality: Quantitative Evaluation of Four Stochastic Models," Risks, MDPI, vol. 4(4), pages 1-28, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:96:y:2021:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.