IDEAS home Printed from https://ideas.repec.org/p/brd/wpaper/05.html
   My bibliography  Save this paper

Unemployment Expectations and the Business Cycle

Author

Listed:
  • Daniel Tortorice

    (Department of Economics, Brandeis University)

Abstract

I compare unemployment expectations from the Michigan Survey of Consumers to VAR forecastable movements in unemployment. I document three key facts. First, one-half to one-third of the population expects unemployment to rise when it is falling at the end of a recession even though the VAR predicts the fall in unemployment. Second, more people expect unemployment to rise when it is falling at the end of a recession than expect it to rise when it is rising at the beginning of a recession even though the VAR predicts these changes. Finally, the lag change in unemployment is almost as important as the VAR forecast in predicting the fraction of the population that expects unemployment to rise. Professional forecasters do not make these mistakes. Least squares learning or real time expectations do little to help explain these facts. However, delayed updating of expectations can explain some of these facts and extrapolative expectations explains these facts best. Individuals with higher income or education are only slightly less likely to make these expectational errors and those who makes these errors are 8-10 percent less likely to believe it is a good time to make a major purchase.

Suggested Citation

  • Daniel Tortorice, 2010. "Unemployment Expectations and the Business Cycle," Working Papers 05, Brandeis University, Department of Economics and International Business School, revised Mar 2011.
  • Handle: RePEc:brd:wpaper:05
    as

    Download full text from publisher

    File URL: http://www.brandeis.edu/economics/RePEc/brd/doc/Brandeis_WP05.pdf
    File Function: First version, 2010
    Download Restriction: no

    File URL: http://www.brandeis.edu/economics/RePEc/brd/doc/Brandeis_WP05R.pdf
    File Function: Second version, 2011
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Athanasios Orphanides & Simon van Norden, 2002. "The Unreliability of Output-Gap Estimates in Real Time," The Review of Economics and Statistics, MIT Press, vol. 84(4), pages 569-583, November.
    2. N. Gregory Mankiw & Ricardo Reis, 2002. "Sticky Information versus Sticky Prices: A Proposal to Replace the New Keynesian Phillips Curve," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 117(4), pages 1295-1328.
    3. Athanasios Orphanides, 2001. "Monetary Policy Rules Based on Real-Time Data," American Economic Review, American Economic Association, vol. 91(4), pages 964-985, September.
    4. Reis, Ricardo, 2006. "Inattentive consumers," Journal of Monetary Economics, Elsevier, vol. 53(8), pages 1761-1800, November.
    5. Christopher D. Carroll, 2003. "Macroeconomic Expectations of Households and Professional Forecasters," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 118(1), pages 269-298.
    6. Souleles, Nicholas S, 2004. "Expectations, Heterogeneous Forecast Errors, and Consumption: Micro Evidence from the Michigan Consumer Sentiment Surveys," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 36(1), pages 39-72, February.
    7. Andreas Fuster & David Laibson & Brock Mendel, 2010. "Natural Expectations and Macroeconomic Fluctuations," Journal of Economic Perspectives, American Economic Association, vol. 24(4), pages 67-84, Fall.
    8. Richard T. Curtin, 2003. "Unemployment Expectations: The Impact of Private Information on Income Uncertainty," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 49(4), pages 539-554, December.
    9. Laurence Ball, 2000. "Near-rationality and inflation in two monetary regimes," Proceedings, Federal Reserve Bank of San Francisco.
    10. Croushore, Dean & Stark, Tom, 2001. "A real-time data set for macroeconomists," Journal of Econometrics, Elsevier, vol. 105(1), pages 111-130, November.
    11. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    12. N. Gregory Mankiw & Ricardo Reis & Justin Wolfers, 2004. "Disagreement about Inflation Expectations," NBER Chapters, in: NBER Macroeconomics Annual 2003, Volume 18, pages 209-270, National Bureau of Economic Research, Inc.
    13. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    14. Olivier Coibion & Yuriy Gorodnichenko, 2012. "What Can Survey Forecasts Tell Us about Information Rigidities?," Journal of Political Economy, University of Chicago Press, vol. 120(1), pages 116-159.
    15. Xavier Gabaix & David Laibson, 2002. "The 6D Bias and the Equity-Premium Puzzle," NBER Chapters, in: NBER Macroeconomics Annual 2001, Volume 16, pages 257-330, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher Roth & Johannes Wohlfart, 2020. "How Do Expectations about the Macroeconomy Affect Personal Expectations and Behavior?," The Review of Economics and Statistics, MIT Press, vol. 102(4), pages 731-748, October.
    2. Dräger, L. & Lamla, M.J. & Pfajfar, D., 2013. "Are Consumer Expectations Theory-Consistent? The Role of Macroeconomic Determinants and Central Bank Communication," Other publications TiSEM 4d696071-8776-4191-a84f-f, Tilburg University, School of Economics and Management.
    3. Emmler, Julian & Fitzenberger, Bernd, 2021. "Temporary Overpessimism: Job Loss Expectations Following a Large Negative Employment Shock," IZA Discussion Papers 14149, Institute of Labor Economics (IZA).
    4. Escobari Diego & Mollick André Varella, 2013. "Output growth and unexpected government expenditures," The B.E. Journal of Macroeconomics, De Gruyter, vol. 13(1), pages 481-513, September.
    5. Julian Emmler & Bernd Fitzenberger, 2022. "Temporary overpessimism: Job loss expectations following a large negative employment shock," Economics of Transition and Institutional Change, John Wiley & Sons, vol. 30(3), pages 621-661, July.
    6. Massenot, Baptiste & Pettinicchi, Yuri, 2019. "Can households see into the future? Survey evidence from the Netherlands," Journal of Economic Behavior & Organization, Elsevier, vol. 164(C), pages 77-90.
    7. Marcel Garz, 2014. "Good news and bad news: evidence of media bias in unemployment reports," Public Choice, Springer, vol. 161(3), pages 499-515, December.
    8. Theresa Kuchler & Basit Zafar, 2019. "Personal Experiences and Expectations about Aggregate Outcomes," Journal of Finance, American Finance Association, vol. 74(5), pages 2491-2542, October.
    9. Andreas Fuster & Benjamin Hebert & David Laibson, 2012. "Natural Expectations, Macroeconomic Dynamics, and Asset Pricing," NBER Macroeconomics Annual, University of Chicago Press, vol. 26(1), pages 1-48.
    10. Karadima, Maria & Louri, Helen, 2021. "Determinants of non-performing loans in Greece: the intricate role of fiscal expansion," LSE Research Online Documents on Economics 110741, London School of Economics and Political Science, LSE Library.
    11. Carvalho, Carlos & Nechio, Fernanda, 2014. "Do people understand monetary policy?," Journal of Monetary Economics, Elsevier, vol. 66(C), pages 108-123.
    12. Massenot, Baptiste & Pettinicchi, Yuri, 2018. "Can firms see into the future? Survey evidence from Germany," Journal of Economic Behavior & Organization, Elsevier, vol. 145(C), pages 66-79.
    13. Emmler, Julian & Fitzenberger, Bernd, 2021. "Temporary overpessimism: Job loss expectations following a large negative employment shock," IAB-Discussion Paper 202105, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    14. Cozzi, Guido & Davenport, Margaret, 2017. "Extrapolative expectations and capital flows during convergence," Journal of International Economics, Elsevier, vol. 108(C), pages 169-190.
    15. Basit Zafar & Theresa Kuchler, 2015. "Expectation Formation," 2015 Meeting Papers 678, Society for Economic Dynamics.
    16. Schanne, Norbert, 2012. "The formation of experts' expectations on labour markets : do they run with the pack?," IAB-Discussion Paper 201225, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
    17. Andreas Fuster & David Laibson & Brock Mendel, 2010. "Natural Expectations and Macroeconomic Fluctuations," Journal of Economic Perspectives, American Economic Association, vol. 24(4), pages 67-84, Fall.
    18. Garz, Marcel, 2013. "Unemployment expectations, excessive pessimism, and news coverage," Journal of Economic Psychology, Elsevier, vol. 34(C), pages 156-168.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clements, Michael P., 2012. "Do professional forecasters pay attention to data releases?," International Journal of Forecasting, Elsevier, vol. 28(2), pages 297-308.
    2. Clements, Michael P., 2010. "Explanations of the inconsistencies in survey respondents' forecasts," European Economic Review, Elsevier, vol. 54(4), pages 536-549, May.
    3. Lena Dräger & Michael J. Lamla, 2017. "Imperfect Information and Consumer Inflation Expectations: Evidence from Microdata," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(6), pages 933-968, December.
    4. Demery, David & Duck, Nigel W., 2007. "The theory of rational expectations and the interpretation of macroeconomic data," Journal of Macroeconomics, Elsevier, vol. 29(1), pages 1-18, March.
    5. Kim, Insu & Kim, Young Se, 2019. "Inattentive agents and inflation forecast error dynamics: A Bayesian DSGE approach," Journal of Macroeconomics, Elsevier, vol. 62(C).
    6. Michael J. Lamla & Thomas Maag, 2012. "The Role of Media for Inflation Forecast Disagreement of Households and Professional Forecasters," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1325-1350, October.
    7. Carlos A. Medel, 2018. "Forecasting Inflation with the Hybrid New Keynesian Phillips Curve: A Compact-Scale Global VAR Approach," International Economic Journal, Taylor & Francis Journals, vol. 32(3), pages 331-371, July.
    8. Beqiraj, Elton & Di Bartolomeo, Giovanni & Di Pietro, Marco, 2019. "Beliefs formation and the puzzle of forward guidance power," Journal of Macroeconomics, Elsevier, vol. 60(C), pages 20-32.
    9. Karlyn Mitchell & Douglas K. Pearce, 2017. "Direct Evidence on Sticky Information from the Revision Behavior of Professional Forecasters," Southern Economic Journal, John Wiley & Sons, vol. 84(2), pages 637-653, October.
    10. Cornand, Camille & Hubert, Paul, 2022. "Information frictions across various types of inflation expectations," European Economic Review, Elsevier, vol. 146(C).
    11. Andrade, Philippe & Gautier, Erwan & Mengus, Eric, 2023. "What matters in households’ inflation expectations?," Journal of Monetary Economics, Elsevier, vol. 138(C), pages 50-68.
    12. Carrera Cesar, 2012. "Estimating Information Rigidity Using Firms' Survey Data," The B.E. Journal of Macroeconomics, De Gruyter, vol. 12(1), pages 1-34, June.
    13. Deversi, Marvin, 2014. "Do Macroeconomic Shocks Affect Intuitive Inflation Forecasting? An Experimental Investigation," Ruhr Economic Papers 528, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. Mark Doms & Norman J. Morin, 2004. "Consumer sentiment, the economy, and the news media," Finance and Economics Discussion Series 2004-51, Board of Governors of the Federal Reserve System (U.S.).
    15. Gaurav Kumar Singh & Tathagata Bandyopadhyay, 2024. "Determinants of disagreement: Learning from inflation expectations survey of households," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(2), pages 326-343, March.
    16. Alberto Cavallo & Guillermo Cruces & Ricardo Perez-Truglia, 2017. "Inflation Expectations, Learning, and Supermarket Prices: Evidence from Survey Experiments," American Economic Journal: Macroeconomics, American Economic Association, vol. 9(3), pages 1-35, July.
    17. Xavier Gabaix, 2017. "Behavioral Inattention," NBER Working Papers 24096, National Bureau of Economic Research, Inc.
    18. Lanne, Markku & Luoma, Arto & Luoto, Jani, 2009. "A naïve sticky information model of households' inflation expectations," Journal of Economic Dynamics and Control, Elsevier, vol. 33(6), pages 1332-1344, June.
    19. Florian Peters & Simas Kucinskas, 2018. "Measuring Biases in Expectation Formation," Tinbergen Institute Discussion Papers 18-058/IV, Tinbergen Institute.
    20. Cole, Stephen J. & Milani, Fabio, 2021. "Heterogeneity in individual expectations, sentiment, and constant-gain learning," Journal of Economic Behavior & Organization, Elsevier, vol. 188(C), pages 627-650.

    More about this item

    Keywords

    Consumer Sentiment; Rational Expectations; Business Fluctuations; Cycles;
    All these keywords.

    JEL classification:

    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:brd:wpaper:05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Luna (email available below). General contact details of provider: https://edirc.repec.org/data/gsbraus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.