IDEAS home Printed from https://ideas.repec.org/p/boc/econ24/06.html
   My bibliography  Save this paper

Supercompliers

Author

Listed:
  • Zhuan Pei

    (Cornell University)

Abstract

In a binary-treatment instrumental-variables framework, we define supercompliers as the subpopulation whose treatment takeup positively responds to eligibility and whose outcome positively responds to takeup. Supercompliers are the only subpopulation to benefit from treatment eligibility and, hence, are of great policy interest. Given a set of jointly testable assumptions and a binary outcome, we can completely identify the characteristics of supercompliers. Specifically, we require the standard assumptions from the local average treatment e

Suggested Citation

  • Zhuan Pei, 2024. "Supercompliers," Economics Virtual Symposium 2024 06, Stata Users Group.
  • Handle: RePEc:boc:econ24:06
    as

    Download full text from publisher

    File URL: http://repec.org/econ2024/Econ24_Pei.pdf
    File Function: presentation materials
    Download Restriction: no
    ---><---

    Other versions of this item:

    • Matthew L. Comey & Amanda R. Eng & Pauline Leung & Zhuan Pei, 2022. "Supercompliers," Papers 2212.14105, arXiv.org, revised Dec 2024.

    References listed on IDEAS

    as
    1. Miriam Bruhn & David McKenzie, 2009. "In Pursuit of Balance: Randomization in Practice in Development Field Experiments," American Economic Journal: Applied Economics, American Economic Association, vol. 1(4), pages 200-232, October.
    2. Xuan Chen & Carlos A. Flores, 2015. "Bounds on Treatment Effects in the Presence of Sample Selection and Noncompliance: The Wage Effects of Job Corps," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 523-540, October.
    3. Michael C Knaus & Michael Lechner & Anthony Strittmatter, 2021. "Machine learning estimation of heterogeneous causal effects: Empirical Monte Carlo evidence," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 134-161.
    4. Alberto Abadie & Joshua Angrist & Guido Imbens, 2002. "Instrumental Variables Estimates of the Effect of Subsidized Training on the Quantiles of Trainee Earnings," Econometrica, Econometric Society, vol. 70(1), pages 91-117, January.
    5. Lex Borghans & Anne C. Gielen & Erzo F. P. Luttmer, 2014. "Social Support Substitution and the Earnings Rebound: Evidence from a Regression Discontinuity in Disability Insurance Reform," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 34-70, November.
    6. Will Dobbie & Jacob Goldin & Crystal S. Yang, 2018. "The Effects of Pretrial Detention on Conviction, Future Crime, and Employment: Evidence from Randomly Assigned Judges," American Economic Review, American Economic Association, vol. 108(2), pages 201-240, February.
    7. Amanda E. Kowalski, 2019. "A Model of a Randomized Experiment with an Application to the PROWESS Clinical Trial," NBER Working Papers 25670, National Bureau of Economic Research, Inc.
    8. Marbach, Moritz & Hangartner, Dominik, 2020. "Profiling Compliers and Noncompliers for Instrumental-Variable Analysis," Political Analysis, Cambridge University Press, vol. 28(3), pages 435-444, July.
    9. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    10. Abadie, Alberto, 2003. "Semiparametric instrumental variable estimation of treatment response models," Journal of Econometrics, Elsevier, vol. 113(2), pages 231-263, April.
    11. Guido W. Imbens & Donald B. Rubin, 1997. "Estimating Outcome Distributions for Compliers in Instrumental Variables Models," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 64(4), pages 555-574.
    12. Marianne P. Bitler & Jonah B. Gelbach & Hilary W. Hoynes, 2017. "Can Variation in Subgroups' Average Treatment Effects Explain Treatment Effect Heterogeneity? Evidence from a Social Experiment," The Review of Economics and Statistics, MIT Press, vol. 99(4), pages 683-697, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Martin & Wüthrich, Kaspar, 2017. "Evaluating local average and quantile treatment effects under endogeneity based on instruments: a review," FSES Working Papers 479, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    2. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    3. Manuel Arellano & Stéphane Bonhomme, 2017. "Quantile Selection Models With an Application to Understanding Changes in Wage Inequality," Econometrica, Econometric Society, vol. 85, pages 1-28, January.
    4. Huber Martin & Wüthrich Kaspar, 2019. "Local Average and Quantile Treatment Effects Under Endogeneity: A Review," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-27, January.
    5. Clément de Chaisemartin, 2017. "Tolerating defiance? Local average treatment effects without monotonicity," Quantitative Economics, Econometric Society, vol. 8(2), pages 367-396, July.
    6. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    7. Andreas Haller & Stefan Staubli & Josef Zweimüller, 2024. "Designing Disability Insurance Reforms: Tightening Eligibility Rules or Reducing Benefits?," Econometrica, Econometric Society, vol. 92(1), pages 79-110, January.
    8. Buhl-Wiggers, Julie & Kerwin, Jason T. & Muñoz-Morales, Juan & Smith, Jeffrey & Thornton, Rebecca, 2024. "Some children left behind: Variation in the effects of an educational intervention," Journal of Econometrics, Elsevier, vol. 243(1).
    9. Imbens, Guido W., 2014. "Instrumental Variables: An Econometrician's Perspective," IZA Discussion Papers 8048, Institute of Labor Economics (IZA).
    10. Matti Sarvimäki & Kari Hämäläinen, 2016. "Integrating Immigrants: The Impact of Restructuring Active Labor Market Programs," Journal of Labor Economics, University of Chicago Press, vol. 34(2), pages 479-508.
    11. Cattaneo, Matias D. & Jansson, Michael & Ma, Xinwei, 2024. "Local regression distribution estimators," Journal of Econometrics, Elsevier, vol. 240(2).
    12. Huber, Martin, 2019. "An introduction to flexible methods for policy evaluation," FSES Working Papers 504, Faculty of Economics and Social Sciences, University of Freiburg/Fribourg Switzerland.
    13. Mahoukede, Kinkingninhoun-Medagbe & Aliou, Diagne & Rita A., Agboh-Noameshie, 2015. "Impact of NERICA Adoption on Productivity and Income in Benin: Is There Gender Difference?," 2015 Conference, August 9-14, 2015, Milan, Italy 211634, International Association of Agricultural Economists.
    14. Gordon B. Dahl & Andreas Ravndal Kostøl & Magne Mogstad, 2014. "Family Welfare Cultures," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1711-1752.
    15. Joshua D. Angrist, 2022. "Empirical Strategies in Economics: Illuminating the Path From Cause to Effect," Econometrica, Econometric Society, vol. 90(6), pages 2509-2539, November.
    16. Carneiro, Pedro & Lee, Sokbae, 2009. "Estimating distributions of potential outcomes using local instrumental variables with an application to changes in college enrollment and wage inequality," Journal of Econometrics, Elsevier, vol. 149(2), pages 191-208, April.
    17. Kaspar Wüthrich, 2020. "A Comparison of Two Quantile Models With Endogeneity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(2), pages 443-456, April.
    18. Kinkingninhoun-Medagbe, Florent M. & Diagne, Aliou & Agboh-Noameshie, Afiavi R. & Lokossou, J. C., 2013. "Who Benefits More From Nerica Varieties? Gender Differential Impact on Yield and Income in Benin," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 161290, African Association of Agricultural Economists (AAAE).
    19. Nguezet, Paul Martin Dontsop & Diagne, Aliou & Okoruwa, Victor Olusegun & Ojehomon, Vivian, 2011. "Impact of Improved Rice Technology (NERICA varieties) on Income and Poverty among Rice Farming Households in Nigeria: A Local Average Treatment Effect (LATE) Approach," Quarterly Journal of International Agriculture, Humboldt-Universitaat zu Berlin, vol. 50(3), pages 1-25.
    20. Kadir Atalay & Garry Barrett, 2022. "Retirement routes and the well-being of retirees," Empirical Economics, Springer, vol. 63(5), pages 2751-2784, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:econ24:06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F Baum (email available below). General contact details of provider: https://edirc.repec.org/data/stataea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.