IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/550.html
   My bibliography  Save this paper

On non-cooperative foundation and implementation of the Nash Solution in subgame perfect equilibrium via Rubinstein’s game

Author

Listed:
  • Duman, Papatya

    (Center for Mathematical Economics, Bielefeld University)

  • Trockel, Walter

    (Center for Mathematical Economics, Bielefeld University)

Abstract

The alternating offers game due to Rubinstein (1982) had been used by Binmore (1980) and by Binmore et.al. (1986) to provide via its unique subgame perfect equilibrium an approximate non-cooperative support for the Nash bargaining solution of associated cooperative two-person bargaining games. These results had strengthened the prominent role of the Nash bargaining solution in cooperative axiomatic bargaining theory and its application, for instance in labor markets, and have often even be interpreted as a mechanism theoretical implementation of the Nash solution. Our results in the present paper provide exact non-cooperative foundations first, in our Proposition, via weakly subgame perfect equilibria of a game that is a modification of Rubinstein´s game, then in our Theorem, via sub-game perfect equilibria of a game that is a further modification of our first game. Moreover, they provide a general rule how to transform approximate support results into exact ones. Finally, we discuss the relation of the above mentioned support results, including our present ones, with mechanism theoretic implementation in (weakly) subgame perfect equilibrium of the Nash solution. There we come to the conclusion that a sound interpretation as an implementation can hardly be found except in very rare cases of extremely restricted domains of players´ preferences.

Suggested Citation

  • Duman, Papatya & Trockel, Walter, 2016. "On non-cooperative foundation and implementation of the Nash Solution in subgame perfect equilibrium via Rubinstein’s game," Center for Mathematical Economics Working Papers 550, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:550
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/2900384/2900385
    File Function: First Version, 2016
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Serrano, Roberto, 1997. "A comment on the Nash program and the theory of implementation," Economics Letters, Elsevier, vol. 55(2), pages 203-208, August.
    2. Rubinstein, Ariel, 1982. "Perfect Equilibrium in a Bargaining Model," Econometrica, Econometric Society, vol. 50(1), pages 97-109, January.
    3. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    4. Nash, John, 1953. "Two-Person Cooperative Games," Econometrica, Econometric Society, vol. 21(1), pages 128-140, April.
    5. Dagan, Nir & Serrano, Roberto, 1998. "Invariance and randomness in the Nash program for coalitional games," Economics Letters, Elsevier, vol. 58(1), pages 43-49, January.
    6. Eric van Damme, 1984. "The Nash Bargaining Solution is Optimal," Discussion Papers 597, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Howard, J. V., 1992. "A social choice rule and its implementation in perfect equilibrium," Journal of Economic Theory, Elsevier, vol. 56(1), pages 142-159, February.
    8. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    9. Sudholter, Peter & Rosenmuller, Joachim & Peleg, Bezalel, 2000. "The canonical extensive form of a game form: Part II. Representation," Journal of Mathematical Economics, Elsevier, vol. 33(3), pages 299-338, April.
    10. Moulin, H., 1984. "Implementing the Kalai-Smorodinsky bargaining solution," Journal of Economic Theory, Elsevier, vol. 33(1), pages 32-45, June.
    11. John C. Harsanyi, 1974. "An Equilibrium-Point Interpretation of Stable Sets and a Proposed Alternative Definition," Management Science, INFORMS, vol. 20(11), pages 1472-1495, July.
    12. Walter Trockel, 2002. "A universal meta bargaining implementation of the Nash solution," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(3), pages 581-586.
    13. Naeve, Jorg, 1999. "Nash implementation of the Nash bargaining solution using intuitive message spaces," Economics Letters, Elsevier, vol. 62(1), pages 23-28, January.
    14. Trockel, Walter, 1996. "A Walrasian approach to bargaining games," Economics Letters, Elsevier, vol. 51(3), pages 295-301, June.
    15. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    16. Damme, Eric van, 1986. "The Nash bargaining solution is optimal," Journal of Economic Theory, Elsevier, vol. 38(1), pages 78-100, February.
    17. Bergin, James & Duggan, John, 1999. "An Implementation-Theoretic Approach to Non-cooperative Foundations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 50-76, May.
    18. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    19. Rodolphe Dos Santos Ferreira, 2002. "Aristotle's analysis of bilateral exchange: an early formal approach to the bargaining problem," The European Journal of the History of Economic Thought, Taylor & Francis Journals, vol. 9(4), pages 568-590.
    20. Leonid Hurwicz, 1994. "Economic design, adjustment processes, mechanisms, and institutions," Review of Economic Design, Springer;Society for Economic Design, vol. 1(1), pages 1-14, December.
    21. Trockel, Walter, 2011. "An exact non-cooperative support for the sequential Raiffa solution," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 77-83, January.
    22. Walter Trockel, 2002. "Integrating the Nash program into mechanism theory," Review of Economic Design, Springer;Society for Economic Design, vol. 7(1), pages 27-43.
    23. Robert L. Bishop, 1963. "Game-Theoretic Analyses of Bargaining," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 77(4), pages 559-602.
    24. Elisabeth Naeve-Steinweg, 1999. "A note on van Damme's mechanism," Review of Economic Design, Springer;Society for Economic Design, vol. 4(2), pages 179-187.
    25. Gerber, Anke & Upmann, Thorsten, 2006. "Bargaining solutions at work: Qualitative differences in policy implications," Mathematical Social Sciences, Elsevier, vol. 52(2), pages 162-175, September.
    26. Naeve-Steinweg, Elisabeth, 2002. "Mechanisms supporting the Kalai-Smorodinsky solution," Mathematical Social Sciences, Elsevier, vol. 44(1), pages 25-36, September.
    27. Walter Trockel, 2000. "Implementations of the Nash solution based on its Walrasian characterization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 16(2), pages 277-294.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    2. Roberto Serrano, 2021. "Sixty-seven years of the Nash program: time for retirement?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 35-48, March.
    3. Claus-Jochen Haake & Walter Trockel, 2021. "Socio-legal Systems and Implementation of the Nash Solution in Debreu-Hurwicz Equilibrium," Working Papers CIE 140, Paderborn University, CIE Center for International Economics.
    4. Duman, Papatya & Trockel, Walter, 2020. "Nash Smoothing on the Test Bench: $H_{\alpha}$ -Essential Equilibria," Center for Mathematical Economics Working Papers 632, Center for Mathematical Economics, Bielefeld University.
    5. Haake, Claus-Jochen & Trockel, Walter, 2021. "Socio-legal Systems and Implementation of the Nash Solution in Debreu-Hurwicz Equilibrium," Center for Mathematical Economics Working Papers 647, Center for Mathematical Economics, Bielefeld University.
    6. Papatya Duman & Walter Trockel, 2020. "Nash Smoothing on the Test Bench: Ha-Essential Equilibria," Working Papers CIE 130, Paderborn University, CIE Center for International Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Trockel, Walter, 2017. "Can and should the Nash Program be looked at as a part of mechanism theory," Center for Mathematical Economics Working Papers 322, Center for Mathematical Economics, Bielefeld University.
    2. Walter Trockel, 2002. "Integrating the Nash program into mechanism theory," Review of Economic Design, Springer;Society for Economic Design, vol. 7(1), pages 27-43.
    3. Roberto Serrano, 2005. "Fifty years of the Nash program, 1953-2003," Investigaciones Economicas, Fundación SEPI, vol. 29(2), pages 219-258, May.
    4. Claus-Jochen Haake & Walter Trockel, 2010. "On Maskin monotonicity of solution based social choice rules," Review of Economic Design, Springer;Society for Economic Design, vol. 14(1), pages 17-25, March.
    5. Walter Trockel, 1999. "On the Nash Program for the Nash Bargaining Solution," UCLA Economics Working Papers 788, UCLA Department of Economics.
    6. Claus-Jochen Haake & Walter Trockel, 2020. "Introduction to the Special Issue “Bargaining”," Homo Oeconomicus: Journal of Behavioral and Institutional Economics, Springer, vol. 37(1), pages 1-6, November.
    7. Trockel, Walter, 2011. "An exact non-cooperative support for the sequential Raiffa solution," Journal of Mathematical Economics, Elsevier, vol. 47(1), pages 77-83, January.
    8. Haake, Claus-Jochen, 2009. "Two support results for the Kalai-Smorodinsky solution in small object division markets," Mathematical Social Sciences, Elsevier, vol. 57(2), pages 177-187, March.
    9. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    10. Claus-Jochen Haake & Walter Trockel, 2022. "Socio-legal systems and implementation of the Nash solution in Debreu–Hurwicz equilibrium," Review of Economic Design, Springer;Society for Economic Design, vol. 26(4), pages 635-649, December.
    11. Bergin, James & Duggan, John, 1999. "An Implementation-Theoretic Approach to Non-cooperative Foundations," Journal of Economic Theory, Elsevier, vol. 86(1), pages 50-76, May.
    12. Binmore, Ken & Osborne, Martin J. & Rubinstein, Ariel, 1992. "Noncooperative models of bargaining," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 7, pages 179-225, Elsevier.
    13. Johannes Spinnewijn & Frans Spinnewyn, 2015. "Revising claims and resisting ultimatums in bargaining problems," Review of Economic Design, Springer;Society for Economic Design, vol. 19(2), pages 91-116, June.
    14. Joan Esteban & József Sákovics, 2002. "Endogenous bargaining power," Economics Working Papers 644, Department of Economics and Business, Universitat Pompeu Fabra.
    15. Roberto Serrano, 2021. "Sixty-seven years of the Nash program: time for retirement?," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(1), pages 35-48, March.
    16. Michele Lombardi & Naoki Yoshihara, 2020. "Partially-honest Nash implementation: a full characterization," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(3), pages 871-904, October.
    17. Rong Kang, 2012. "An Axiomatic Approach to Arbitration and its Application in Bargaining Games," The B.E. Journal of Theoretical Economics, De Gruyter, vol. 12(1), pages 1-34, September.
    18. Trockel, Walter, 2017. "Unique Nash implementation for a class of bargaining solutions," Center for Mathematical Economics Working Papers 308, Center for Mathematical Economics, Bielefeld University.
    19. Joan-Maria Esteban & József Sákovics, 2005. "A Theory of Agreements in the Shadow of Conflict," Working Papers 255, Barcelona School of Economics.
    20. Thorsten Upmann & Julia Müller, 2014. "The Structure of Firm-Specific Labour Unions," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 170(2), pages 336-364, June.

    More about this item

    Keywords

    Nash program; Non-cooperative foundation; Implementation; Nash solution; Rubinstein game; Subgame perfect equilibrium;
    All these keywords.

    JEL classification:

    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games
    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bettina Weingarten (email available below). General contact details of provider: https://edirc.repec.org/data/imbiede.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.