IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/909.html
   My bibliography  Save this paper

Investment, Technological Progress and Energy Efficiency

Author

Listed:
  • Antonia Diaz
  • Luis A. Puch

Abstract

In this paper we propose a macroeconomic model where energy intensity at the macro level responds to changes in energy prices and technological innovations. In our theory this response depends on the interaction between the energy efficiency built in capital goods and the growth rate of Investment Speciï¬ c Technological Change. ISTC reduces the cost to produce investment goods (extensive margin) and renders them more productive (intensive margin). Higher ISTC acts as an energy saving device. If energy prices stay constant, a permanent increase in the growth rate of ISTC may rise energy intensity in the long run, producing a rebound effect. This is so because the combination of higher ISTC growth rate and constant energy prices makes agents to choose less energy efficient capital goods. Our theory can be used to test when and how we should see a rebound effect in energy use at the aggregate level and can be used to test the aggregate effect of any policy aiming to reduce energy use.

Suggested Citation

  • Antonia Diaz & Luis A. Puch, 2016. "Investment, Technological Progress and Energy Efficiency," Working Papers 909, Barcelona School of Economics.
  • Handle: RePEc:bge:wpaper:909
    as

    Download full text from publisher

    File URL: https://bw.bse.eu/wp-content/uploads/2016/07/909-file.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gospodinov, Nikolay & Kan, Raymond & Robotti, Cesare, 2013. "Chi-squared tests for evaluation and comparison of asset pricing models," Journal of Econometrics, Elsevier, vol. 173(1), pages 108-125.
    2. Chao, John C. & Swanson, Norman R. & Hausman, Jerry A. & Newey, Whitney K. & Woutersen, Tiemen, 2012. "Asymptotic Distribution Of Jive In A Heteroskedastic Iv Regression With Many Instruments," Econometric Theory, Cambridge University Press, vol. 28(1), pages 42-86, February.
    3. Kleibergen, Frank & Paap, Richard, 2006. "Generalized reduced rank tests using the singular value decomposition," Journal of Econometrics, Elsevier, vol. 133(1), pages 97-126, July.
    4. Martin Lettau & Sydney Ludvigson, 2001. "Consumption, Aggregate Wealth, and Expected Stock Returns," Journal of Finance, American Finance Association, vol. 56(3), pages 815-849, June.
    5. Anatolyev, Stanislav & Gospodinov, Nikolay, 2011. "Specification Testing In Models With Many Instruments," Econometric Theory, Cambridge University Press, vol. 27(2), pages 427-441, April.
    6. Deaton, Angus, 1985. "Panel data from time series of cross-sections," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 109-126.
    7. Donald, Stephen G. & Fortuna, Natércia & Pipiras, Vladas, 2007. "On Rank Estimation In Symmetric Matrices: The Case Of Indefinite Matrix Estimators," Econometric Theory, Cambridge University Press, vol. 23(6), pages 1217-1232, December.
    8. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    9. Adrien Verdelhan, 2018. "The Share of Systematic Variation in Bilateral Exchange Rates," Journal of Finance, American Finance Association, vol. 73(1), pages 375-418, February.
    10. Angrist, Joshua D., 1991. "Grouped-data estimation and testing in simple labor-supply models," Journal of Econometrics, Elsevier, vol. 47(2-3), pages 243-266, February.
    11. Kleibergen, Frank & Zhan, Zhaoguo, 2015. "Unexplained factors and their effects on second pass R-squared’s," Journal of Econometrics, Elsevier, vol. 189(1), pages 101-116.
    12. Morimune, Kimio, 1983. "Approximate Distributions of k-Class Estimators When the Degree of Overidentifiability Is Large Compared with the Sample Size," Econometrica, Econometric Society, vol. 51(3), pages 821-841, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsushi Inoue & Barbara Rossi, 2015. "Tests for the validity of portfolio or group choice in financial and panel regressions," Economics Working Papers 1523, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.
    3. Tom Boot & Johannes W. Ligtenberg, 2023. "Identification- and many instrument-robust inference via invariant moment conditions," Papers 2303.07822, arXiv.org, revised Feb 2025.
    4. Kolesár, Michal, 2018. "Minimum distance approach to inference with many instruments," Journal of Econometrics, Elsevier, vol. 204(1), pages 86-100.
    5. Hyunseok Jung & Xiaodong Liu, 2023. "Testing for Peer Effects without Specifying the Network Structure," Papers 2306.09806, arXiv.org, revised Jul 2024.
    6. Matsushita, Yukitoshi & Otsu, Taisuke, 2024. "A jackknife Lagrange multiplier test with many weak instruments," LSE Research Online Documents on Economics 116392, London School of Economics and Political Science, LSE Library.
    7. Crudu, Federico & Mellace, Giovanni & Sándor, Zsolt, 2021. "Inference In Instrumental Variable Models With Heteroskedasticity And Many Instruments," Econometric Theory, Cambridge University Press, vol. 37(2), pages 281-310, April.
    8. Paul A. Bekker & Jan van der Ploeg, 2000. "Instrumental Variable Estimation Based on Grouped Data," Econometric Society World Congress 2000 Contributed Papers 1862, Econometric Society.
    9. Johannes W. Ligtenberg, 2023. "Inference in IV models with clustered dependence, many instruments and weak identification," Papers 2306.08559, arXiv.org, revised Mar 2024.
    10. Michal Kolesár & Raj Chetty & John Friedman & Edward Glaeser & Guido W. Imbens, 2015. "Identification and Inference With Many Invalid Instruments," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(4), pages 474-484, October.
    11. Chao, John C. & Hausman, Jerry A. & Newey, Whitney K. & Swanson, Norman R. & Woutersen, Tiemen, 2014. "Testing overidentifying restrictions with many instruments and heteroskedasticity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 15-21.
    12. Murray Michael P., 2017. "Linear Model IV Estimation When Instruments Are Many or Weak," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    13. Dennis Lim & Wenjie Wang & Yichong Zhang, 2022. "A Conditional Linear Combination Test with Many Weak Instruments," Papers 2207.11137, arXiv.org, revised Apr 2023.
    14. Marine Carrasco & Mohamed Doukali, 2022. "Testing overidentifying restrictions with many instruments and heteroscedasticity using regularised jackknife IV," The Econometrics Journal, Royal Economic Society, vol. 25(1), pages 71-97.
    15. Bekker, Paul A. & Crudu, Federico, 2015. "Jackknife instrumental variable estimation with heteroskedasticity," Journal of Econometrics, Elsevier, vol. 185(2), pages 332-342.
    16. Wang, Wenjie, 2020. "On Bootstrap Validity for the Test of Overidentifying Restrictions with Many Instruments and Heteroskedasticity," MPRA Paper 104858, University Library of Munich, Germany.
    17. Chao, John C. & Swanson, Norman R. & Woutersen, Tiemen, 2023. "Jackknife estimation of a cluster-sample IV regression model with many weak instruments," Journal of Econometrics, Elsevier, vol. 235(2), pages 1747-1769.
    18. Anatolyev, Stanislav & Sølvsten, Mikkel, 2023. "Testing many restrictions under heteroskedasticity," Journal of Econometrics, Elsevier, vol. 236(1).
    19. Lim, Dennis & Wang, Wenjie & Zhang, Yichong, 2024. "A conditional linear combination test with many weak instruments," Journal of Econometrics, Elsevier, vol. 238(2).
    20. Anatolyev, Stanislav & Mikusheva, Anna, 2021. "Limit Theorems For Factor Models," Econometric Theory, Cambridge University Press, vol. 37(5), pages 1034-1074, October.

    More about this item

    Keywords

    Rebound effect; Energy efficiency; Vintage capital; Investment Speciï¬ c Technical Change;
    All these keywords.

    JEL classification:

    • E22 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Investment; Capital; Intangible Capital; Capacity
    • E23 - Macroeconomics and Monetary Economics - - Consumption, Saving, Production, Employment, and Investment - - - Production
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:909. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.