Semi-Markovian Discrete-Time Telegraph Process with Generalized Sibuya Waiting Times
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Michelitsch, Thomas M. & Polito, Federico & Riascos, Alejandro P., 2021. "On discrete time Prabhakar-generalized fractional Poisson processes and related stochastic dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
- Metzler, Ralf & Compte, Albert, 1999. "Stochastic foundation of normal and anomalous Cattaneo-type transport," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 268(3), pages 454-468.
- Alessandro Gregorio & Stefano Iacus, 2008.
"Parametric estimation for the standard and geometric telegraph process observed at discrete times,"
Statistical Inference for Stochastic Processes, Springer, vol. 11(3), pages 249-263, October.
- Stefano Iacus & Alessandro De Gregorio, 2006. "Parametric estimation for the standard and the geometric telegraph process observed at discrete times," UNIMI - Research Papers in Economics, Business, and Statistics unimi-1033, Universitá degli Studi di Milano.
- Tomasz J. Kozubowski & Krzysztof Podgórski, 2018. "A generalized Sibuya distribution," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(4), pages 855-887, August.
- Bogachev, Leonid & Ratanov, Nikita, 2011. "Occupation time distributions for the telegraph process," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1816-1844, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Abel Garcia-Bernabé & S. I. Hernández & L. F. Del Castillo & David Jou, 2016. "Continued-Fraction Expansion of Transport Coefficients with Fractional Calculus," Mathematics, MDPI, vol. 4(4), pages 1-10, December.
- De Gregorio, Alessandro & Iafrate, Francesco, 2021. "Telegraph random evolutions on a circle," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 79-108.
- Wang, Jianbiao & Miwa, Tomio & Morikawa, Takayuki, 2023. "Recursive decomposition probability model for demand estimation of street-hailing taxis utilizing GPS trajectory data," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 171-195.
- Awad, Emad, 2019. "On the time-fractional Cattaneo equation of distributed order," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 518(C), pages 210-233.
- De Gregorio, Alessandro, 2009. "Parametric estimation for planar random flights," Statistics & Probability Letters, Elsevier, vol. 79(20), pages 2193-2199, October.
- Peter Kern & Svenja Lage, 2023. "On Self-Similar Bernstein Functions and Corresponding Generalized Fractional Derivatives," Journal of Theoretical Probability, Springer, vol. 36(1), pages 348-371, March.
- V. Pozdnyakov & L. M. Elbroch & C. Hu & T. Meyer & J. Yan, 2020. "On Estimation for Brownian Motion Governed by Telegraph Process with Multiple Off States," Methodology and Computing in Applied Probability, Springer, vol. 22(3), pages 1275-1291, September.
- Nikita Ratanov, 2020. "Kac–Lévy Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 239-267, March.
- Nikita Ratanov, 2020. "First Crossing Times of Telegraph Processes with Jumps," Methodology and Computing in Applied Probability, Springer, vol. 22(1), pages 349-370, March.
- Thierry E. Huillet, 2020. "On New Mechanisms Leading to Heavy-Tailed Distributions Related to the Ones Of Yule-Simon," Indian Journal of Pure and Applied Mathematics, Springer, vol. 51(1), pages 321-344, March.
- Balakrishnan, N. & Jones, M.C., 2022. "Closure of beta and Dirichlet distributions under discrete mixing," Statistics & Probability Letters, Elsevier, vol. 188(C).
- Jones, M.C. & Balakrishnan, N., 2021. "Simple functions of independent beta random variables that follow beta distributions," Statistics & Probability Letters, Elsevier, vol. 170(C).
- Povstenko, Y.Z., 2010. "Evolution of the initial box-signal for time-fractional diffusion–wave equation in a case of different spatial dimensions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(21), pages 4696-4707.
- Ratanov, Nikita, 2021. "On telegraph processes, their first passage times and running extrema," Statistics & Probability Letters, Elsevier, vol. 174(C).
- Cinque, Fabrizio, 2022. "A note on the conditional probabilities of the telegraph process," Statistics & Probability Letters, Elsevier, vol. 185(C).
- Thierry E. Huillet, 2022. "Chance Mechanisms Involving Sibuya Distribution and its Relatives," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 722-764, November.
- Antonio Di Crescenzo & Barbara Martinucci & Shelemyahu Zacks, 2018. "Telegraph Process with Elastic Boundary at the Origin," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 333-352, March.
More about this item
Keywords
non-markovian random walk; telegraph (Cattaneo) process; generalized Sibuya distribution; discrete-time renewal process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:2:p:471-:d:1037116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.