IDEAS home Printed from https://ideas.repec.org/p/bea/papers/0131.html
   My bibliography  Save this paper

Consumer Learning and Price Index Bias: How Diffusion of Product Quality Knowledge Impacts Measures of Price Change

Author

Listed:
  • Daniel Ripperger-Suhler

Abstract

There is a general consensus that the bias associated with the entry of new merchants has nontrivial implications for measuring inflation. However, quantifying the bias empirically has proven difficult in part because little is known about how much of the price differences in goods sold by new versus old merchants represents a pure price difference (inflation) or differences in the quality of the attendant services (quality differences). In the public transportation industry, measurement of quality is complicated by the accompanying technological change rideshare services represented. As with any completely new technology, consumers faced considerable uncertainty around the quality of rideshare services. Consequently, consumers' perceived quality of rideshare services changes over time, which makes the calculation of constant-quality price indexes even more challenging. This paper explores a new method for accounting for this bias by separately identifying changes in product price and quality over time. I estimate multiple hedonic models to recover quality adjustment factors for quality-adjusted unit value price indexes. One of these models utilizes measures of time-varying product quality that are derived from a structural demand model of endogenous consumer learning that explicitly models the diffusion of knowledge about the quality of rideshare services. I compare the measurement of quality and pure price differences across modes of transportation, and the implications they have for constant-quality price indexes and, consequently, the measurement of inflation.

Suggested Citation

  • Daniel Ripperger-Suhler, 2024. "Consumer Learning and Price Index Bias: How Diffusion of Product Quality Knowledge Impacts Measures of Price Change," BEA Papers 0131, Bureau of Economic Analysis.
  • Handle: RePEc:bea:papers:0131
    as

    Download full text from publisher

    File URL: https://www.bea.gov/system/files/papers/BEA-WP2024-7.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew T. Ching, 2010. "A Dynamic Oligopoly Structural Model For The Prescription Drug Market After Patent Expiration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 51(4), pages 1175-1207, November.
    2. Tülin Erdem & Michael P. Keane, 1996. "Decision-Making Under Uncertainty: Capturing Dynamic Brand Choice Processes in Turbulent Consumer Goods Markets," Marketing Science, INFORMS, vol. 15(1), pages 1-20.
    3. Mick Silver, 2009. "An Index Number Formula Problem: The Aggregation of Broadly Comparable items," IMF Working Papers 2009/019, International Monetary Fund.
    4. McFadden, Daniel, 1989. "A Method of Simulated Moments for Estimation of Discrete Response Models without Numerical Integration," Econometrica, Econometric Society, vol. 57(5), pages 995-1026, September.
    5. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    6. Ana M. Aizcorbe & Jeff Chen, 2022. "Outlet Substitution Bias Estimates for Ride Sharing and Taxi Rides in New York City," BEA Working Papers 0192, Bureau of Economic Analysis.
    7. Ana Aizcorbe & Jeffrey C. Chen, 2023. "Outlet Substitution Bias Estimates for Ride Sharing and Taxi Rides in New York City," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2023-02, Economic Statistics Centre of Excellence (ESCoE).
    8. John H. Roberts & Glen L. Urban, 1988. "Modeling Multiattribute Utility, Risk, and Belief Dynamics for New Consumer Durable Brand Choice," Management Science, INFORMS, vol. 34(2), pages 167-185, February.
    9. Peter Cohen & Robert Hahn & Jonathan Hall & Steven Levitt & Robert Metcalfe, 2016. "Using Big Data to Estimate Consumer Surplus: The Case of Uber," NBER Working Papers 22627, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ching, Andrew T., 2010. "Consumer learning and heterogeneity: Dynamics of demand for prescription drugs after patent expiration," International Journal of Industrial Organization, Elsevier, vol. 28(6), pages 619-638, November.
    2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
    3. Andrew Ching & Susumu Imai & Masakazu Ishihara & Neelam Jain, 2012. "A practitioner’s guide to Bayesian estimation of discrete choice dynamic programming models," Quantitative Marketing and Economics (QME), Springer, vol. 10(2), pages 151-196, June.
    4. Ching, Andrew T. & Erdem, Tülin & Keane, Michael P., 2014. "A simple method to estimate the roles of learning, inventories and category consideration in consumer choice," Journal of choice modelling, Elsevier, vol. 13(C), pages 60-72.
    5. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2017. "Empirical Models of Learning Dynamics: A Survey of Recent Developments," International Series in Operations Research & Management Science, in: Berend Wierenga & Ralf van der Lans (ed.), Handbook of Marketing Decision Models, edition 2, chapter 0, pages 223-257, Springer.
    6. Xu, Yan, 2017. "Essays on preference formation and home production," Other publications TiSEM b028fd7e-53ba-4ff6-97eb-4, Tilburg University, School of Economics and Management.
    7. Michael P. Keane & Nada Wasi, 2013. "The Structure of Consumer Taste Heterogeneity in Revealed vs. Stated Preference Data," Economics Papers 2013-W10, Economics Group, Nuffield College, University of Oxford.
    8. Simon P. Anderson & Federico Ciliberto & Jura Liaukonyte & Régis Renault, 2016. "Push-me pull-you: comparative advertising in the OTC analgesics industry," RAND Journal of Economics, RAND Corporation, vol. 47(4), pages 1029-1056, November.
    9. Song Lin & Juanjuan Zhang & John R. Hauser, 2015. "Learning from Experience, Simply," Marketing Science, INFORMS, vol. 34(1), pages 1-19, January.
    10. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2020. "How much do consumers know about the quality of products? Evidence from the diaper market," The Japanese Economic Review, Springer, vol. 71(4), pages 541-569, October.
    11. Inseong Song & Pradeep Chintagunta, 2003. "A Micromodel of New Product Adoption with Heterogeneous and Forward-Looking Consumers: Application to the Digital Camera Category," Quantitative Marketing and Economics (QME), Springer, vol. 1(4), pages 371-407, December.
    12. Daniel Ackerberg, 2009. "A new use of importance sampling to reduce computational burden in simulation estimation," Quantitative Marketing and Economics (QME), Springer, vol. 7(4), pages 343-376, December.
    13. Alicia Barroso & Gerard Llobet, 2011. "Advertising and Consumer Awareness of New, Differentiated Products," Working Papers wp2011_1104, CEMFI.
    14. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Invited Paper ---Learning Models: An Assessment of Progress, Challenges, and New Developments," Marketing Science, INFORMS, vol. 32(6), pages 913-938, November.
    15. Matthew Grennan & Robert J. Town, 2020. "Regulating Innovation with Uncertain Quality: Information, Risk, and Access in Medical Devices," American Economic Review, American Economic Association, vol. 110(1), pages 120-161, January.
    16. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    17. Jinyang Zheng & Fei Ren & Yong Tan & Xi Chen, 2020. "Optimizing Two-Sided Promotion for Transportation Network Companies: A Structural Model with Conditional Bayesian Learning," Information Systems Research, INFORMS, vol. 31(3), pages 692-714, September.
    18. Andrew Ching, 2000. "Dynamic Equilibrium in the US Prescription Drug Market After Patent Expiration," Econometric Society World Congress 2000 Contributed Papers 1242, Econometric Society.
    19. Günter J. Hitsch, 2006. "An Empirical Model of Optimal Dynamic Product Launch and Exit Under Demand Uncertainty," Marketing Science, INFORMS, vol. 25(1), pages 25-50, 01-02.
    20. Haiyan Liu, 2016. "A Structural Model of Advertising Signaling and Social Learning: The Case of the Motion Picture Industry," Working Papers 0216, University of South Florida, Department of Economics.

    More about this item

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation
    • L15 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - Information and Product Quality
    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bea:papers:0131. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Andrea Batch (email available below). General contact details of provider: https://edirc.repec.org/data/beagvus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.