IDEAS home Printed from https://ideas.repec.org/p/bdm/wpaper/2022-07.html
   My bibliography  Save this paper

Visualization, Identification, and Estimation in the Linear Panel Event Study Design

Author

Listed:
  • Freyaldenhoven Simon
  • Hansen Christian
  • Pérez Pérez Jorge
  • Shapiro Jesse M.

Abstract

Linear panel models, and the "event-study plots" that often accompany them, are popular tools for learning about policy effects. We discuss the construction of event-study plots and suggest ways to make them more informative. We examine the economic content of different possible identifying assumptions. We explore the performance of the corresponding estimators in simulations, highlighting that a given estimator can perform well or poorly depending on the economic environment. An accompanying Stata package, xtevent, facilitates adoption of our suggestions.

Suggested Citation

  • Freyaldenhoven Simon & Hansen Christian & Pérez Pérez Jorge & Shapiro Jesse M., 2022. "Visualization, Identification, and Estimation in the Linear Panel Event Study Design," Working Papers 2022-07, Banco de México.
  • Handle: RePEc:bdm:wpaper:2022-07
    as

    Download full text from publisher

    File URL: https://www.banxico.org.mx/publications-and-press/banco-de-mexico-working-papers/%7BB45F1C4A-141A-049F-2D4F-76D439670332%7D.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    2. Leora Friedberg, 1998. "Did Unilateral Divorce Raise Divorce Rates? Evidence from Panel Data," NBER Working Papers 6398, National Bureau of Economic Research, Inc.
    3. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    4. Liangjun Su & Zhentao Shi & Peter C. B. Phillips, 2016. "Identifying Latent Structures in Panel Data," Econometrica, Econometric Society, vol. 84, pages 2215-2264, November.
    5. Feng, Guohua & Gao, Jiti & Peng, Bin & Zhang, Xiaohui, 2017. "A varying-coefficient panel data model with fixed effects: Theory and an application to US commercial banks," Journal of Econometrics, Elsevier, vol. 196(1), pages 68-82.
    6. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    7. Clément de Chaisemartin & Xavier D'Haultfœuille, 2020. "Two-Way Fixed Effects Estimators with Heterogeneous Treatment Effects," American Economic Review, American Economic Association, vol. 110(9), pages 2964-2996, September.
    8. M. Hashem Pesaran, 2006. "Estimation and Inference in Large Heterogeneous Panels with a Multifactor Error Structure," Econometrica, Econometric Society, vol. 74(4), pages 967-1012, July.
    9. Philippe Aghion & Céline Antonin & Simon Bunel & Xavier Jaravel, 2020. "What Are the Labor and Product Market Effects of Automation? New Evidence from France," SciencePo Working papers Main hal-03403062, HAL.
    10. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    11. Besley, Timothy & Case, Anne, 2000. "Unnatural Experiments? Estimating the Incidence of Endogenous Policies," Economic Journal, Royal Economic Society, vol. 110(467), pages 672-694, November.
    12. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    13. Matthew Gentzkow & Jesse M. Shapiro & Michael Sinkinson, 2011. "The Effect of Newspaper Entry and Exit on Electoral Politics," American Economic Review, American Economic Association, vol. 101(7), pages 2980-3018, December.
    14. Carlos Dobkin & Amy Finkelstein & Raymond Kluender & Matthew J. Notowidigdo, 2018. "The Economic Consequences of Hospital Admissions," American Economic Review, American Economic Association, vol. 108(2), pages 308-352, February.
    15. Stéphane Bonhomme & Elena Manresa, 2015. "Grouped Patterns of Heterogeneity in Panel Data," Econometrica, Econometric Society, vol. 83(3), pages 1147-1184, May.
    16. Jacobson, Louis S & LaLonde, Robert J & Sullivan, Daniel G, 1993. "Earnings Losses of Displaced Workers," American Economic Review, American Economic Association, vol. 83(4), pages 685-709, September.
    17. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    18. Ashenfelter, Orley C, 1978. "Estimating the Effect of Training Programs on Earnings," The Review of Economics and Statistics, MIT Press, vol. 60(1), pages 47-57, February.
    19. Catherine Hausman & David S. Rapson, 2018. "Regression Discontinuity in Time: Considerations for Empirical Applications," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 533-552, October.
    20. Louis S. Jacobson & Robert J. LaLonde & Daniel G. Sullivan, 1993. "Long-term earnings losses of high-seniority displaced workers," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 17(Nov), pages 2-20.
    21. Abadie, Alberto & Diamond, Alexis & Hainmueller, Jens, 2010. "Synthetic Control Methods for Comparative Case Studies: Estimating the Effect of California’s Tobacco Control Program," Journal of the American Statistical Association, American Statistical Association, vol. 105(490), pages 493-505.
    22. David Neumark & William Wascher, 1992. "Employment Effects of Minimum and Subminimum Wages: Panel Data on State Minimum Wage Laws," ILR Review, Cornell University, ILR School, vol. 46(1), pages 55-81, October.
    23. Neumark, David & Wascher, William L., 2007. "Minimum Wages and Employment," Foundations and Trends(R) in Microeconomics, now publishers, vol. 3(1–2), pages 1-182, March.
    24. Justine Hastings & Ryan Kessler & Jesse M. Shapiro, 2021. "The Effect of SNAP on the Composition of Purchased Foods: Evidence and Implications," American Economic Journal: Economic Policy, American Economic Association, vol. 13(3), pages 277-315, August.
    25. Aigner, Dennis J. & Hsiao, Cheng & Kapteyn, Arie & Wansbeek, Tom, 1984. "Latent variable models in econometrics," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 23, pages 1321-1393, Elsevier.
    26. repec:hal:spmain:info:hdl:2441/170cd4sul89ddpnfuomvfm0jc0 is not listed on IDEAS
    27. Sun, Liyang & Abraham, Sarah, 2021. "Estimating dynamic treatment effects in event studies with heterogeneous treatment effects," Journal of Econometrics, Elsevier, vol. 225(2), pages 175-199.
    28. repec:hal:spmain:info:hdl:2441/3n1gbsj6rs80ipqv9d42nfd0ge is not listed on IDEAS
    29. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    30. Freyberger, Joachim & Rai, Yoshiyasu, 2018. "Uniform confidence bands: Characterization and optimality," Journal of Econometrics, Elsevier, vol. 204(1), pages 119-130.
    31. James Heckman & Jose Scheinkman, 1987. "The Importance of Bundling in a Gorman-Lancaster Model of Earnings," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 54(2), pages 243-255.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Callaway, Brantly & Karami, Sonia, 2023. "Treatment effects in interactive fixed effects models with a small number of time periods," Journal of Econometrics, Elsevier, vol. 233(1), pages 184-208.
    2. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    3. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    4. Myungkou Shin, 2022. "Finitely Heterogeneous Treatment Effect in Event-study," Papers 2204.02346, arXiv.org, revised Oct 2024.
    5. Clément de Chaisemartin & Xavier D’Haultfœuille, 2023. "Two-way fixed effects and differences-in-differences with heterogeneous treatment effects: a survey," The Econometrics Journal, Royal Economic Society, vol. 26(3), pages 1-30.
    6. Simon Freyaldenhoven & Christian Hansen & Jesse M. Shapiro, 2019. "Pre-event Trends in the Panel Event-Study Design," American Economic Review, American Economic Association, vol. 109(9), pages 3307-3338, September.
    7. Goodman-Bacon, Andrew, 2021. "Difference-in-differences with variation in treatment timing," Journal of Econometrics, Elsevier, vol. 225(2), pages 254-277.
    8. Bas Scheer & Wiljan van den Berge & Maarten Goos & Alan Manning & Anna Salomons, 2022. "Alternative Work Arrangements and Worker Outcomes: Evidence from Payrolling," CPB Discussion Paper 435, CPB Netherlands Bureau for Economic Policy Analysis.
    9. Kyunghoon Ban & D'esir'e K'edagni, 2022. "Robust Difference-in-differences Models," Papers 2211.06710, arXiv.org, revised Aug 2023.
    10. Carter, Colin A. & Steinbach, Sandro & Zhuang, Xiting, 2022. "Global Shipping Container Disruptions and U.S. Agricultural Exports," Working Papers 320397, International Agricultural Trade Research Consortium.
    11. Athey, Susan & Imbens, Guido W., 2022. "Design-based analysis in Difference-In-Differences settings with staggered adoption," Journal of Econometrics, Elsevier, vol. 226(1), pages 62-79.
    12. Callaway, Brantly & Sant’Anna, Pedro H.C., 2021. "Difference-in-Differences with multiple time periods," Journal of Econometrics, Elsevier, vol. 225(2), pages 200-230.
    13. Paul Bingley & Lorenzo Cappellari & Marco Ovidi, 2023. "When it hurts the most: timing of parental job loss and a child’s education," LISER Working Paper Series 2023-12, Luxembourg Institute of Socio-Economic Research (LISER).
    14. Carter, Colin A. & Steinbach, Sandro & Zhuang, Xiting, 2022. "Global Container Trade Disruptions and U.S. Agricultural Exports," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322364, Agricultural and Applied Economics Association.
    15. Timo Schenk, 2023. "Time-Weighted Difference-in-Differences: Accounting for Common Factors in Short T Panels," Tinbergen Institute Discussion Papers 23-004/III, Tinbergen Institute.
    16. Peter Blair & Elijah Neilson, 2023. "Divorce and Property Division Laws Shape Human Capital Investment," Working Papers 2023-020, Human Capital and Economic Opportunity Working Group.
    17. Jon Ellingsen & Caroline Espegren, 2022. "Lost in transition? Earnings losses of displaced petroleum workers," Working Papers No 06/2022, Centre for Applied Macro- and Petroleum economics (CAMP), BI Norwegian Business School.
    18. John McHale & Jason Harold & Jen-Chung Mei & Akhil Sasidharan & Anil Yadav, 2023. "Stars as catalysts: an event-study analysis of the impact of star-scientist recruitment on local research performance in a small open economy," Journal of Economic Geography, Oxford University Press, vol. 23(2), pages 343-369.
    19. Timothy B. Armstrong & Patrick Kline & Liyang Sun, 2023. "Adapting to Misspecification," Papers 2305.14265, arXiv.org, revised Aug 2024.
    20. Luis Alvarez & Bruno Ferman, 2023. "Extensions for Inference in Difference-in-Differences with Few Treated Clusters," Papers 2302.03131, arXiv.org.

    More about this item

    Keywords

    Linear Panel Data Models; Difference-in-Differences; Staggered Adoption; Pre-Trends; Event Study;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdm:wpaper:2022-07. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Subgerencia de desarrollo de sistemas (email available below). General contact details of provider: https://edirc.repec.org/data/bangvmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.