IDEAS home Printed from https://ideas.repec.org/p/bdm/wpaper/2011-08.html
   My bibliography  Save this paper

Time-series Modelling, Stationarity and Bayesian Nonparametric Methods

Author

Listed:
  • Martínez-Ovando Juan Carlos
  • Walker Stephen G.

Abstract

In this paper we introduce two general non-parametric first-order stationary time-series models for which marginal (invariant) and transition distributions are expressed as infinite-dimensional mixtures. That feature makes them the first Bayesian stationary fully non-parametric models developed so far. We draw on the discussion of using stationary models in practice, as a motivation, and advocate the view that flexible (non-parametric) stationary models might be a source for reliable inferences and predictions. It will be noticed that our models adequately fit in the Bayesian inference framework due to a suitable representation theorem. A stationary scale-mixture model is developed as a particular case along with a computational strategy for posterior inference and predictions. The usefulness of that model is illustrated with the analysis of Euro/USD exchange rate log-returns.

Suggested Citation

  • Martínez-Ovando Juan Carlos & Walker Stephen G., 2011. "Time-series Modelling, Stationarity and Bayesian Nonparametric Methods," Working Papers 2011-08, Banco de México.
  • Handle: RePEc:bdm:wpaper:2011-08
    as

    Download full text from publisher

    File URL: https://www.banxico.org.mx/publications-and-press/banco-de-mexico-working-papers/%7BC01450C9-01C9-B4BF-03B4-4C6ADC9190F0%7D.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Markus Haas, 2004. "A New Approach to Markov-Switching GARCH Models," Journal of Financial Econometrics, Oxford University Press, vol. 2(4), pages 493-530.
    2. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    3. Giacomini, Raffaella & Gottschling, Andreas & Haefke, Christian & White, Halbert, 2008. "Mixtures of t-distributions for finance and forecasting," Journal of Econometrics, Elsevier, vol. 144(1), pages 175-192, May.
    4. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    5. Viviane Campos & Chang Dorea, 2005. "Kernel estimation for stationary density of Markov chains with general state space," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 57(3), pages 443-453, September.
    6. Rodríguez, Abel & Dunson, David B & Gelfand, Alan E, 2008. "The Nested Dirichlet Process," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1131-1154.
    7. Clements Michael P. & Hendry David F., 2008. "Economic Forecasting in a Changing World," Capitalism and Society, De Gruyter, vol. 3(2), pages 1-20, October.
    8. Ishwaran H. & James L. F, 2001. "Gibbs Sampling Methods for Stick Breaking Priors," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 161-173, March.
    9. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    10. Luis E. Nieto‐Barajas & Stephen G. Walker, 2002. "Markov Beta and Gamma Processes for Modelling Hazard Rates," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(3), pages 413-424, September.
    11. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    12. Pitt, Michael K. & Walker, Stephen G., 2005. "Constructing Stationary Time Series Models Using Auxiliary Variables With Applications," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 554-564, June.
    13. Nadjib Bouzar & K. Jayakumar, 2008. "Time series with discrete semistable marginals," Statistical Papers, Springer, vol. 49(4), pages 619-635, October.
    14. Ramsés Mena & Stephen Walker, 2007. "On the Stationary Version of the Generalized Hyperbolic ARCH Model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(2), pages 325-348, June.
    15. Teh, Yee Whye & Jordan, Michael I. & Beal, Matthew J. & Blei, David M., 2006. "Hierarchical Dirichlet Processes," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1566-1581, December.
    16. Ramsés H. Mena & Stephen G. Walker, 2005. "Stationary Autoregressive Models via a Bayesian Nonparametric Approach," Journal of Time Series Analysis, Wiley Blackwell, vol. 26(6), pages 789-805, November.
    17. Pitt, Michael K. & Walker, Stephen G., 2006. "Extended constructions of stationary autoregressive processes," Statistics & Probability Letters, Elsevier, vol. 76(12), pages 1219-1224, July.
    18. Rong Zhu & Harry Joe, 2006. "Modelling Count Data Time Series with Markov Processes Based on Binomial Thinning," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(5), pages 725-738, September.
    19. Michael K. Pitt & Chris Chatfield & Stephen G. Walker, 2002. "Constructing First Order Stationary Autoregressive Models via Latent Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 657-663, December.
    20. Barry, Christopher B. & Winkler, Robert L., 1976. "Nonstationarity and Portfolio Choice," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 11(2), pages 217-235, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isadora Antoniano-Villalobos & Stephen G. Walker, 2016. "A Nonparametric Model for Stationary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(1), pages 126-142, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2014. "Beta-product dependent Pitman–Yor processes for Bayesian inference," Journal of Econometrics, Elsevier, vol. 180(1), pages 49-72.
    2. Bassetti, Federico & Casarin, Roberto & Leisen, Fabrizio, 2011. "Beta-product Poisson-Dirichlet Processes," DES - Working Papers. Statistics and Econometrics. WS 12160, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Jin, Xin & Maheu, John M., 2016. "Bayesian semiparametric modeling of realized covariance matrices," Journal of Econometrics, Elsevier, vol. 192(1), pages 19-39.
    4. Carl H. Korkpoe & Peterson Owusu Junior, 2018. "Behaviour of Johannesburg Stock Exchange All Share Index Returns - An Asymmetric GARCH and News Impact Effects Approach," SPOUDAI Journal of Economics and Business, SPOUDAI Journal of Economics and Business, University of Piraeus, vol. 68(1), pages 26-42, January-M.
    5. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    6. Yong Song & Tomasz Wo'zniak, 2020. "Markov Switching," Papers 2002.03598, arXiv.org.
    7. BAUWENS, Luc & HAFNER, Christian & LAURENT, Sébastien, 2011. "Volatility models," LIDAM Discussion Papers CORE 2011058, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
      • Bauwens, L. & Hafner, C. & Laurent, S., 2012. "Volatility Models," LIDAM Reprints ISBA 2012028, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
      • Bauwens, L. & Hafner C. & Laurent, S., 2011. "Volatility Models," LIDAM Discussion Papers ISBA 2011044, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    8. Leisen, Fabrizio & Mena, Ramsés H. & Palma, Freddy & Rossini, Luca, 2019. "On a flexible construction of a negative binomial model," Statistics & Probability Letters, Elsevier, vol. 152(C), pages 1-8.
    9. CARPANTIER, Jean-François & DUFAYS, Arnaud, 2014. "Specific Markov-switching behaviour for ARMA parameters," LIDAM Discussion Papers CORE 2014014, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    10. de Alba, Enrique & Nieto-Barajas, Luis E., 2008. "Claims reserving: A correlated Bayesian model," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 368-376, December.
    11. Peter Müeller & Fernando A. Quintana & Garritt Page, 2018. "Nonparametric Bayesian inference in applications," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(2), pages 175-206, June.
    12. Matteo Iacopini & Luca Rossini, 2019. "Bayesian nonparametric graphical models for time-varying parameters VAR," Papers 1906.02140, arXiv.org.
    13. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    14. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    15. Xiang Lin & Martin Thomas Falk, 2022. "Nordic stock market performance of the travel and leisure industry during the first wave of Covid-19 pandemic," Tourism Economics, , vol. 28(5), pages 1240-1257, August.
    16. Ataurima Arellano, Miguel & Rodríguez, Gabriel, 2020. "Empirical modeling of high-income and emerging stock and Forex market return volatility using Markov-switching GARCH models," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    17. Masaru Chiba, 2023. "Robust and efficient specification tests in Markov-switching autoregressive models," Statistical Inference for Stochastic Processes, Springer, vol. 26(1), pages 99-137, April.
    18. Aloui, Chaker & Hammoudeh, Shawkat & Hamida, Hela Ben, 2015. "Price discovery and regime shift behavior in the relationship between sharia stocks and sukuk: A two-state Markov switching analysis," Pacific-Basin Finance Journal, Elsevier, vol. 34(C), pages 121-135.
    19. Yang Lu, 2020. "A simple parameter‐driven binary time series model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 187-199, March.
    20. Shi, Yanlin & Ho, Kin-Yip, 2015. "Long memory and regime switching: A simulation study on the Markov regime-switching ARFIMA model," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 189-204.

    More about this item

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdm:wpaper:2011-08. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Subgerencia de desarrollo de sistemas (email available below). General contact details of provider: https://edirc.repec.org/data/bangvmx.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.