IDEAS home Printed from https://ideas.repec.org/p/bdi/wptemi/td_750_10.html
   My bibliography  Save this paper

Estimating DSGE models with unknown data persistence

Author

Listed:
  • Gianluca Moretti

    (Bank of Italy)

  • Giulio Nicoletti

    (Bank of Italy)

Abstract

Recent empirical literature shows that key macro variables such as GDP and productivity display long memory dynamics. For DSGE models, we propose a �Generalized� Kalman Filter to deal effectively with this problem: our method connects to and innovates upon data-filtering techniques already used in the DSGE literature. We show our method produces more plausible estimates of the deep parameters as well as more accurate out-of-sample forecasts of macroeconomic data.

Suggested Citation

  • Gianluca Moretti & Giulio Nicoletti, 2010. "Estimating DSGE models with unknown data persistence," Temi di discussione (Economic working papers) 750, Bank of Italy, Economic Research and International Relations Area.
  • Handle: RePEc:bdi:wptemi:td_750_10
    as

    Download full text from publisher

    File URL: http://www.bancaditalia.it/pubblicazioni/temi-discussione/2010/2010-0750/en_Tema_750.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ellen R. McGrattan, 2010. "Measurement with minimal theory," Quarterly Review, Federal Reserve Bank of Minneapolis, issue July, pages 2-13.
    2. Altissimo, Filippo & Mojon, Benoit & Zaffaroni, Paolo, 2009. "Can aggregation explain the persistence of inflation?," Journal of Monetary Economics, Elsevier, vol. 56(2), pages 231-241, March.
    3. Abadir, Karim M. & Caggiano, Giovanni & Talmain, Gabriel, 2013. "Nelson–Plosser revisited: The ACF approach," Journal of Econometrics, Elsevier, vol. 175(1), pages 22-34.
    4. Ravenna, Federico, 2007. "Vector autoregressions and reduced form representations of DSGE models," Journal of Monetary Economics, Elsevier, vol. 54(7), pages 2048-2064, October.
    5. Yongsung Chang & Taeyoung Doh & Frank Schorfheide, 2007. "Non‐stationary Hours in a DSGE Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(6), pages 1357-1373, September.
    6. Gil-Alana, Luis Alberiko & Moreno, Antonio, 2009. "Technology Shocks And Hours Worked: A Fractional Integration Perspective," Macroeconomic Dynamics, Cambridge University Press, vol. 13(5), pages 580-604, November.
    7. Christiano, Lawrence J. & Vigfusson, Robert J., 2003. "Maximum likelihood in the frequency domain: the importance of time-to-plan," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 789-815, May.
    8. V. V. Chari & Patrick J. Kehoe & Ellen R. McGrattan, 2009. "New Keynesian Models: Not Yet Useful for Policy Analysis," American Economic Journal: Macroeconomics, American Economic Association, vol. 1(1), pages 242-266, January.
    9. Ruge-Murcia, Francisco J., 2007. "Methods to estimate dynamic stochastic general equilibrium models," Journal of Economic Dynamics and Control, Elsevier, vol. 31(8), pages 2599-2636, August.
    10. Ireland, Peter N., 2004. "A method for taking models to the data," Journal of Economic Dynamics and Control, Elsevier, vol. 28(6), pages 1205-1226, March.
    11. Baillie, Richard T., 1996. "Long memory processes and fractional integration in econometrics," Journal of Econometrics, Elsevier, vol. 73(1), pages 5-59, July.
    12. Joseph G. Haubrich & Andrew W. Lo, 2001. "The sources and nature of long-term memory in aggregate output," Economic Review, Federal Reserve Bank of Cleveland, issue Q II, pages 15-30.
    13. Karim Abadir & Gabriel Talmain, 2002. "Aggregation, Persistence and Volatility in a Macro Model," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 749-779.
    14. Fabio Canova & Filippo Ferroni, 2011. "Multiple filtering devices for the estimation of cyclical DSGE models," Quantitative Economics, Econometric Society, vol. 2(1), pages 73-98, March.
    15. Gorodnichenko, Yuriy & Ng, Serena, 2010. "Estimation of DSGE models when the data are persistent," Journal of Monetary Economics, Elsevier, vol. 57(3), pages 325-340, April.
    16. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    17. Timothy Cogley & Argia M. Sbordone, 2008. "Trend Inflation, Indexation, and Inflation Persistence in the New Keynesian Phillips Curve," American Economic Review, American Economic Association, vol. 98(5), pages 2101-2126, December.
    18. María Dolores Gadea & Laura Mayoral, 2006. "The Persistence of Inflation in OECD Countries: A Fractionally Integrated Approach," International Journal of Central Banking, International Journal of Central Banking, vol. 2(1), March.
    19. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    20. Kydland, Finn E & Prescott, Edward C, 1982. "Time to Build and Aggregate Fluctuations," Econometrica, Econometric Society, vol. 50(6), pages 1345-1370, November.
    21. Rotemberg, Julio J & Woodford, Michael, 1996. "Real-Business-Cycle Models and the Forecastable Movements in Output, Hours, and Consumption," American Economic Review, American Economic Association, vol. 86(1), pages 71-89, March.
    22. Klein, Paul, 2000. "Using the generalized Schur form to solve a multivariate linear rational expectations model," Journal of Economic Dynamics and Control, Elsevier, vol. 24(10), pages 1405-1423, September.
    23. Gianluca Moretti, 2007. "Detecting long memory co-movements in macroeconomic time series," Temi di discussione (Economic working papers) 642, Bank of Italy, Economic Research and International Relations Area.
    24. Diebold, Francis X. & Rudebusch, Glenn D., 1989. "Long memory and persistence in aggregate output," Journal of Monetary Economics, Elsevier, vol. 24(2), pages 189-209, September.
    25. Sowell, Fallaw, 1992. "Modeling long-run behavior with the fractional ARIMA model," Journal of Monetary Economics, Elsevier, vol. 29(2), pages 277-302, April.
    26. C. W. J. Granger & Roselyne Joyeux, 1980. "An Introduction To Long‐Memory Time Series Models And Fractional Differencing," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 15-29, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianluca, MORETTI & Giulio, NICOLETTI, 2008. "Estimating DGSE models with long memory dynamics," Discussion Papers (ECON - Département des Sciences Economiques) 2008037, Université catholique de Louvain, Département des Sciences Economiques.
    2. Canova, Fabio, 2014. "Bridging DSGE models and the raw data," Journal of Monetary Economics, Elsevier, vol. 67(C), pages 1-15.
    3. Fernández-Villaverde, J. & Rubio-Ramírez, J.F. & Schorfheide, F., 2016. "Solution and Estimation Methods for DSGE Models," Handbook of Macroeconomics, in: J. B. Taylor & Harald Uhlig (ed.), Handbook of Macroeconomics, edition 1, volume 2, chapter 0, pages 527-724, Elsevier.
    4. Laura Mayoral, 2006. "Further Evidence on the Statistical Properties of Real GNP," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 901-920, December.
    5. Giovanni Angelini & Luca Fanelli, 2016. "Misspecification and Expectations Correction in New Keynesian DSGE Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 623-649, October.
    6. Francis X. Diebold, 1998. "The Past, Present, and Future of Macroeconomic Forecasting," Journal of Economic Perspectives, American Economic Association, vol. 12(2), pages 175-192, Spring.
    7. Luca Sala, 2015. "Dsge Models in the Frequency Domains," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 219-240, March.
    8. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2020. "Modeling US historical time-series prices and inflation using alternative long-memory approaches," Empirical Economics, Springer, vol. 58(4), pages 1491-1511, April.
    9. Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Nicholas Kilimani & Amandine Nakumuryango & Siobhan Redford, 2014. "Predicting BRICS stock returns using ARFIMA models," Applied Financial Economics, Taylor & Francis Journals, vol. 24(17), pages 1159-1166, September.
    10. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    11. Jensen, Mark J. & Liu, Ming, 2006. "Do long swings in the business cycle lead to strong persistence in output?," Journal of Monetary Economics, Elsevier, vol. 53(3), pages 597-611, April.
    12. Raffaella Giacomini, 2013. "The relationship between DSGE and VAR models," CeMMAP working papers CWP21/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Karim M. Abadir & Gabriel Talmain, 2012. "Beyond Co-Integration: Modelling Co-Movements in Macro finance," Working Paper series 25_12, Rimini Centre for Economic Analysis.
    14. Chong, Terence Tai-Leung, 2000. "Estimating the differencing parameter via the partial autocorrelation function," Journal of Econometrics, Elsevier, vol. 97(2), pages 365-381, August.
    15. Galvão, Ana Beatriz, 2017. "Data revisions and DSGE models," Journal of Econometrics, Elsevier, vol. 196(1), pages 215-232.
    16. Belbute, José M. & Pereira, Alfredo M., 2020. "Reference forecasts for CO2 emissions from fossil-fuel combustion and cement production in Portugal," Energy Policy, Elsevier, vol. 144(C).
    17. Giorgio Canarella & Luis A. Gil-Alana & Rangan Gupta & Stephen M. Miller, 2016. "Modeling U.S. Historical Time-Series Prices and Inflation Using Various Linear and Nonlinear Long-Memory Approaches," Working Papers 201683, University of Pretoria, Department of Economics.
    18. Ana Pérez & Esther Ruiz, 2002. "Modelos de memoria larga para series económicas y financieras," Investigaciones Economicas, Fundación SEPI, vol. 26(3), pages 395-445, September.
    19. Komunjer, Ivana & Zhu, Yinchu, 2020. "Likelihood ratio testing in linear state space models: An application to dynamic stochastic general equilibrium models," Journal of Econometrics, Elsevier, vol. 218(2), pages 561-586.
    20. Silverberg, Gerald & Verspagen, Bart, 1999. "Long Memory in Time Series of Economic Growth and Convergence," Research Memorandum 015, Maastricht University, Maastricht Economic Research Institute on Innovation and Technology (MERIT).

    More about this item

    Keywords

    DSGE models; long memory; Kalman Filter.;
    All these keywords.

    JEL classification:

    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bdi:wptemi:td_750_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/bdigvit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.