IDEAS home Printed from https://ideas.repec.org/p/ptu/wpaper/w200106.html
   My bibliography  Save this paper

Aggregation, Persistence and Volatility in a Macromodel

Author

Listed:
  • Karim Abadir

Abstract

Starting from microeconomic foundations, we derive a general formula for the aggregation of outputs of heterogeneous firms (or sectors), and we solve explicitly for the fundamental intertemporal equilibrium path of the aggregate economy. The firms are subject to temporary technology shocks, but the aggregate output has radically different dynamical properties, and a special form of long memory and nonlinearity never used hitherto. We study, analytically, the implied time series properties of the new process characterizing aggregate GDP per capita. This process is more persistent than any dynamically-stable linear process (e.g. autoregressions) and yet is mean-reverting (unlike unit-root processes), and its volatility is of a greater order of magnitude than that of any of its components. This amplification of volatility means that even small shocks at the micro level can lead to large fluctuations at the macro level. The process is also characterized by long cycles which have random lengths and which are asymmetric. Increased monopoly power will tend to reduce the amplitude and increase the persistence of business cycles. Strikingly, we find that the nonlinear aggregate process has an S-shaped decay of memory, similar to the data but unlike linear time series models such as the widely-used Auto-Regressive Integrated Moving-Average (ARIMA) processes and their special cases (including fractional Integration).

Suggested Citation

  • Karim Abadir, 2001. "Aggregation, Persistence and Volatility in a Macromodel," Working Papers w200106, Banco de Portugal, Economics and Research Department.
  • Handle: RePEc:ptu:wpaper:w200106
    as

    Download full text from publisher

    File URL: https://www.bportugal.pt/sites/default/files/anexos/papers/wp200106.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    More about this item

    JEL classification:

    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E1 - Macroeconomics and Monetary Economics - - General Aggregative Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ptu:wpaper:w200106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: DEE-NTD (email available below). General contact details of provider: https://edirc.repec.org/data/bdpgvpt.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.