IDEAS home Printed from https://ideas.repec.org/a/bla/ehsrev/v76y2023i2p624-660.html
   My bibliography  Save this article

New perspectives on the contribution of sanitary investments to mortality decline in English cities, 1845–1909

Author

Listed:
  • Toke S. Aidt
  • Romola J. Davenport
  • Felix Gray

Abstract

Health improved in English cities in the last third of the nineteenth century, in tandem with substantial increases in public spending on water supplies and sanitation. However, previous efforts to measure the contribution of public expenditures to mortality improvements have been hampered by difficulties in quantifying public health investments and the lack of mortality data for specifically urban populations. We improve upon the existing evidence base by (1) creating measures of the stock of urban district sanitary capital, by type, on the basis of capital expenditure flows, rather than loan stocks; (2) using mortality and capital stock data that relate to the same administrative units (urban districts), and (3) studying the period 1880–1909 as well as the earlier period from 1845. The stock of sewerage capital was robustly related to improvements in all‐cause mortality after 1880. The size of this effect varied with the extent of public investment in water supplies, suggesting complementarity between the two assets. For the period 1845–84, investments in water were associated with declines in infant and child mortality but the effect was much smaller and less precisely estimated in later decades. Our results suggest that improvements in water and sewerage targeted different transmission pathways for faecal–oral diseases.

Suggested Citation

  • Toke S. Aidt & Romola J. Davenport & Felix Gray, 2023. "New perspectives on the contribution of sanitary investments to mortality decline in English cities, 1845–1909," Economic History Review, Economic History Society, vol. 76(2), pages 624-660, May.
  • Handle: RePEc:bla:ehsrev:v:76:y:2023:i:2:p:624-660
    DOI: 10.1111/ehr.13195
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/ehr.13195
    Download Restriction: no

    File URL: https://libkey.io/10.1111/ehr.13195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Feenstra & Robert Inklaar & Marcel P. Timmer, 2015. "The Next Generation of the Penn World Table," American Economic Review, American Economic Association, vol. 105(10), pages 3150-3182, October.
    2. Joseph G. Altonji & Todd E. Elder & Christopher R. Taber, 2005. "Selection on Observed and Unobserved Variables: Assessing the Effectiveness of Catholic Schools," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 151-184, February.
    3. Brian Beach & Werner Troesken & Nicola Tynan, 2016. "Who Should Own and Control Urban Water Systems? Historical Evidence from England and Wales," NBER Working Papers 22553, National Bureau of Economic Research, Inc.
    4. Kesztenbaum, Lionel & Rosenthal, Jean-Laurent, 2017. "Sewers’ diffusion and the decline of mortality: The case of Paris, 1880–1914," Journal of Urban Economics, Elsevier, vol. 98(C), pages 174-186.
    5. Maile T Phillips & Katharine A Owers & Bryan T Grenfell & Virginia E Pitzer, 2020. "Changes in historical typhoid transmission across 16 U.S. cities, 1889-1931: Quantifying the impact of investments in water and sewer infrastructures," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 14(3), pages 1-22, March.
    6. Emily Oster, 2019. "Unobservable Selection and Coefficient Stability: Theory and Evidence," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(2), pages 187-204, April.
    7. D. Mark Anderson & Kerwin Kofi Charles & Daniel I. Rees, 2022. "Reexamining the Contribution of Public Health Efforts to the Decline in Urban Mortality," American Economic Journal: Applied Economics, American Economic Association, vol. 14(2), pages 126-157, April.
    8. Marcella Alsan & Claudia Goldin, 2019. "Watersheds in Child Mortality: The Role of Effective Water and Sewerage Infrastructure, 1880–1920," Journal of Political Economy, University of Chicago Press, vol. 127(2), pages 586-638.
    9. Troesken, Werner & Tynan, Nicola & Yang, Yuanxiaoyue Artemis, 2021. "What are the health benefits of a constant water supply? Evidence from London, 1860–1910," Explorations in Economic History, Elsevier, vol. 81(C).
    10. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    11. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    12. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    13. Hanlon, W. Walker & Hansen, Casper Worm & Kantor, Jake, 2021. "Temperature, Disease, and Death in London: Analyzing Weekly Data for the Century from 1866 to 1965," The Journal of Economic History, Cambridge University Press, vol. 81(1), pages 40-80, March.
    14. Beach, Brian & Ferrie, Joseph & Saavedra, Martin & Troesken, Werner, 2016. "Typhoid Fever, Water Quality, and Human Capital Formation," The Journal of Economic History, Cambridge University Press, vol. 76(1), pages 41-75, March.
    15. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    16. Hainmueller, Jens & Mummolo, Jonathan & Xu, Yiqing, 2019. "How Much Should We Trust Estimates from Multiplicative Interaction Models? Simple Tools to Improve Empirical Practice," Political Analysis, Cambridge University Press, vol. 27(2), pages 163-192, April.
    17. David Cutler & Grant Miller, 2005. "The role of public health improvements in health advances: The twentieth-century United States," Demography, Springer;Population Association of America (PAA), vol. 42(1), pages 1-22, February.
    18. D. Mark Anderson & Kerwin Kofi Charles & Daniel I. Rees, 2022. "Reexamining the Contribution of Public Health Efforts to the Decline in Urban Mortality: Reply," American Economic Journal: Applied Economics, American Economic Association, vol. 14(2), pages 166-169, April.
    19. Chapman, Jonathan, 2022. "Interest Rates, Sanitation Infrastructure, and Mortality Decline in Nineteenth-Century England and Wales," The Journal of Economic History, Cambridge University Press, vol. 82(1), pages 175-210, March.
    20. J. A. Hassan, 1985. "The Growth and Impact of the British Water Industry in the Nineteenth Century," Economic History Review, Economic History Society, vol. 38(4), pages 531-547, November.
    21. John C. Brown & Timothy W. Guinnane, 2018. "Infant mortality decline in rural and urban Bavaria: fertility, economic transformation, infant care, and inequality in Bavaria and Munich, 1825–1910," Economic History Review, Economic History Society, vol. 71(3), pages 853-886, August.
    22. Jonathan Chapman, 2019. "The contribution of infrastructure investment to Britain's urban mortality decline, 1861–1900," Economic History Review, Economic History Society, vol. 72(1), pages 233-259, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gallardo Albarrán, Daniel, 2024. "The Global Sanitary Revolution in Historical Perspective," CEPR Discussion Papers 18754, C.E.P.R. Discussion Papers.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gallardo Albarrán, Daniel, 2024. "The Global Sanitary Revolution in Historical Perspective," CEPR Discussion Papers 18754, C.E.P.R. Discussion Papers.
    2. Daniel Gallardo‐Albarrán, 2020. "Sanitary infrastructures and the decline of mortality in Germany, 1877–1913," Economic History Review, Economic History Society, vol. 73(3), pages 730-757, August.
    3. Troesken, Werner & Tynan, Nicola & Yang, Yuanxiaoyue Artemis, 2021. "What are the health benefits of a constant water supply? Evidence from London, 1860–1910," Explorations in Economic History, Elsevier, vol. 81(C).
    4. Ogasawara, Kota & Matsushita, Yukitoshi, 2018. "Public health and multiple-phase mortality decline: Evidence from industrializing Japan," Economics & Human Biology, Elsevier, vol. 29(C), pages 198-210.
    5. Anderson, D. Mark & Charles, Kerwin Kofi & Rees, Daniel I. & Wang, Tianyi, 2021. "Water purification efforts and the black‐white infant mortality gap, 1906–1938," Journal of Urban Economics, Elsevier, vol. 122(C).
    6. Claire Lepault, 2023. "Is urban wastewater treatment effective in India? Evidence from water quality and infant mortality," CIRED Working Papers hal-04232407, HAL.
    7. Michail Raftakis, 2023. "Urban mortality in Greece: Hermoupolis (1859–1940)," Economic History Review, Economic History Society, vol. 76(3), pages 728-758, August.
    8. Antman, Francisca M. & Flynn, James, 2024. "When Beer Is Safer than Water: Beer Availability and Mortality from Waterborne Illnesses," IZA Discussion Papers 17164, Institute of Labor Economics (IZA).
    9. Anderson, D. Mark & Rees, Daniel I. & Wang, Tianyi, 2020. "The phenomenon of summer diarrhea and its waning, 1910-1930⁎," Explorations in Economic History, Elsevier, vol. 78(C).
    10. Sequeira, Tiago & Morão, Hugo, 2020. "Growth accounting and regressions: New approach and results," International Economics, Elsevier, vol. 162(C), pages 67-79.
    11. Jerch, Rhiannon L. & Phaneuf, Daniel J., 2024. "Cities and water quality," Regional Science and Urban Economics, Elsevier, vol. 107(C).
    12. Hanlon, W. Walker & Hansen, Casper Worm & Kantor, Jake, 2021. "Temperature, Disease, and Death in London: Analyzing Weekly Data for the Century from 1866 to 1965," The Journal of Economic History, Cambridge University Press, vol. 81(1), pages 40-80, March.
    13. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    14. Alberto Batinti & Joan Costa‐Font & Timothy J. Hatton, 2022. "Voting Up? The Effects of Democracy and Franchise Extension on Human Stature," Economica, London School of Economics and Political Science, vol. 89(353), pages 161-190, January.
    15. Lauren Hoehn‐Velasco & Elizabeth Wrigley‐Field, 2022. "City health departments, public health expenditures, and urban mortality over 1910–1940," Economic Inquiry, Western Economic Association International, vol. 60(2), pages 929-953, April.
    16. Jonathan Chapman, 2021. "Interest Rates, Sanitation Infrastructure, and Mortality Decline in Nineteenth-Century England and Wales," Working Papers 0218, European Historical Economics Society (EHES).
    17. D. Mark Anderson & Kerwin Kofi Charles & Daniel I. Rees, 2018. "Public Health Efforts and the Decline in Urban Mortality," NBER Working Papers 25027, National Bureau of Economic Research, Inc.
    18. Beach, Brian, 2022. "Water infrastructure and health in U.S. cities," Regional Science and Urban Economics, Elsevier, vol. 94(C).
    19. Kota Ogasawara & Yukitoshi Matsushita, 2019. "Heterogeneous treatment effects of safe water on infectious disease: Do meteorological factors matter?," Cliometrica, Springer;Cliometric Society (Association Francaise de Cliométrie), vol. 13(1), pages 55-82, January.
    20. Cheng, Hui-Pei & Swee, Eik Leong, 2024. "Farewell President! Political favoritism, economic inequality, and political polarization," European Journal of Political Economy, Elsevier, vol. 81(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:ehsrev:v:76:y:2023:i:2:p:624-660. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/ehsukea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.