IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i18p3249-d908993.html
   My bibliography  Save this article

The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem

Author

Listed:
  • Pan-Li Zhang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    These authors contributed equally to this work.)

  • Xiao-Bo Sun

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China
    These authors contributed equally to this work.)

  • Ji-Quan Wang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Hao-Hao Song

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Jin-Ling Bei

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

  • Hong-Yu Zhang

    (College of Engineering, Northeast Agricultural University, Harbin 150030, China)

Abstract

The traveling salesman problem (TSP) widely exists in real-life practical applications; it is a topic that is under investigation and presents unsolved challenges. The existing solutions still have some challenges in convergence speed, iteration time, and avoiding local optimization. In this work, a new method is introduced, called the discrete carnivorous plant algorithm (DCPA) with similarity elimination to tackle the TSP. In this approach, we use a combination of six steps: first, the algorithm redefines subtraction, multiplication, and addition operations, which aims to ensure that it can switch from continuous space to discrete space without losing information; second, a simple sorting grouping method is proposed to reduce the chance of being trapped in a local optimum; third, the similarity-eliminating operation is added, which helps to maintain population diversity; fourth, an adaptive attraction probability is proposed to balance exploration and the exploitation ability; fifth, an iterative local search (ILS) strategy is employed, which is beneficial to increase the searching precision; finally, to evaluate its performance, DCPA is compared with nine algorithms. The results demonstrate that DCPA is significantly better in terms of accuracy, average optimal solution error, and iteration time.

Suggested Citation

  • Pan-Li Zhang & Xiao-Bo Sun & Ji-Quan Wang & Hao-Hao Song & Jin-Ling Bei & Hong-Yu Zhang, 2022. "The Discrete Carnivorous Plant Algorithm with Similarity Elimination Applied to the Traveling Salesman Problem," Mathematics, MDPI, vol. 10(18), pages 1-34, September.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3249-:d:908993
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/18/3249/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/18/3249/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quang Minh Ha & Yves Deville & Quang Dung Pham & Minh Hoàng Hà, 2020. "A hybrid genetic algorithm for the traveling salesman problem with drone," Journal of Heuristics, Springer, vol. 26(2), pages 219-247, April.
    2. S. Lin & B. W. Kernighan, 1973. "An Effective Heuristic Algorithm for the Traveling-Salesman Problem," Operations Research, INFORMS, vol. 21(2), pages 498-516, April.
    3. G. A. Croes, 1958. "A Method for Solving Traveling-Salesman Problems," Operations Research, INFORMS, vol. 6(6), pages 791-812, December.
    4. Yanlan Deng & Juxia Xiong & Qiuhong Wang, 2021. "A Hybrid Cellular Genetic Algorithm for the Traveling Salesman Problem," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-16, February.
    5. Paris-C. Kanellakis & Christos H. Papadimitriou, 1980. "Local Search for the Asymmetric Traveling Salesman Problem," Operations Research, INFORMS, vol. 28(5), pages 1086-1099, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Kheiri & Alina G. Dragomir & David Mueller & Joaquim Gromicho & Caroline Jagtenberg & Jelke J. Hoorn, 2019. "Tackling a VRP challenge to redistribute scarce equipment within time windows using metaheuristic algorithms," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 561-595, December.
    2. R Torres-Velázquez & V Estivill-Castro, 2004. "Local search for Hamiltonian Path with applications to clustering visitation paths," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(7), pages 737-748, July.
    3. Ozgur, C. O. & Brown, J. R., 1995. "A two-stage traveling salesman procedure for the single machine sequence-dependent scheduling problem," Omega, Elsevier, vol. 23(2), pages 205-219, April.
    4. Taillard, Éric D., 2022. "A linearithmic heuristic for the travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 297(2), pages 442-450.
    5. Mahmoudinazlou, Sasan & Kwon, Changhyun, 2024. "A hybrid genetic algorithm with type-aware chromosomes for Traveling Salesman Problems with Drone," European Journal of Operational Research, Elsevier, vol. 318(3), pages 719-739.
    6. Nikolakopoulos, Athanassios & Sarimveis, Haralambos, 2007. "A threshold accepting heuristic with intense local search for the solution of special instances of the traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 177(3), pages 1911-1929, March.
    7. Luc Muyldermans & Patrick Beullens & Dirk Cattrysse & Dirk Van Oudheusden, 2005. "Exploring Variants of 2-Opt and 3-Opt for the General Routing Problem," Operations Research, INFORMS, vol. 53(6), pages 982-995, December.
    8. N. A. Arellano-Arriaga & J. Molina & S. E. Schaeffer & A. M. Álvarez-Socarrás & I. A. Martínez-Salazar, 2019. "A bi-objective study of the minimum latency problem," Journal of Heuristics, Springer, vol. 25(3), pages 431-454, June.
    9. Sandra Zajac, 2018. "On a two-phase solution approach for the bi-objective k-dissimilar vehicle routing problem," Journal of Heuristics, Springer, vol. 24(3), pages 515-550, June.
    10. CASTRO, Marco & SÖRENSEN, Kenneth & GOOS, Peter & VANSTEENWEGEN, Pieter, 2014. "The multiple travelling salesperson problem with hotel selection," Working Papers 2014030, University of Antwerp, Faculty of Business and Economics.
    11. Gary R. Waissi & Pragya Kaushal, 2020. "A polynomial matrix processing heuristic algorithm for finding high quality feasible solutions for the TSP," OPSEARCH, Springer;Operational Research Society of India, vol. 57(1), pages 73-87, March.
    12. Egon Balas & Neil Simonetti, 2001. "Linear Time Dynamic-Programming Algorithms for New Classes of Restricted TSPs: A Computational Study," INFORMS Journal on Computing, INFORMS, vol. 13(1), pages 56-75, February.
    13. Sheldon H. Jacobson & Shane N. Hall & Laura A. McLay & Jeffrey E. Orosz, 2005. "Performance Analysis of Cyclical Simulated Annealing Algorithms," Methodology and Computing in Applied Probability, Springer, vol. 7(2), pages 183-201, June.
    14. Gang Du & Xi Liang & Chuanwang Sun, 2017. "Scheduling Optimization of Home Health Care Service Considering Patients’ Priorities and Time Windows," Sustainability, MDPI, vol. 9(2), pages 1-22, February.
    15. Lucas García & Pedro M. Talaván & Javier Yáñez, 2022. "The 2-opt behavior of the Hopfield Network applied to the TSP," Operational Research, Springer, vol. 22(2), pages 1127-1155, April.
    16. G Laporte, 2010. "A concise guide to the Traveling Salesman Problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 35-40, January.
    17. Chen, Yu-Wang & Zhu, Yao-Jia & Yang, Gen-Ke & Lu, Yong-Zai, 2011. "Improved extremal optimization for the asymmetric traveling salesman problem," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4459-4465.
    18. César Rego & Fred Glover, 2010. "Ejection chain and filter-and-fan methods in combinatorial optimization," Annals of Operations Research, Springer, vol. 175(1), pages 77-105, March.
    19. Çavdar, Bahar & Sokol, Joel, 2015. "TSP Race: Minimizing completion time in time-sensitive applications," European Journal of Operational Research, Elsevier, vol. 244(1), pages 47-54.
    20. Haitao Xu & Pan Pu & Feng Duan, 2018. "Dynamic Vehicle Routing Problems with Enhanced Ant Colony Optimization," Discrete Dynamics in Nature and Society, Hindawi, vol. 2018, pages 1-13, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:18:p:3249-:d:908993. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.