IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v22y2022i8p1445-1464.html
   My bibliography  Save this article

The reinforcement learning Kelly strategy

Author

Listed:
  • R. Jiang
  • D. Saunders
  • C. Weng

Abstract

The full Kelly portfolio strategy's deficiency in the face of estimation errors in practice can be mitigated by fractional or shrinkage Kelly strategies. This paper provides an alternative, the RL Kelly strategy, based on a reinforcement learning (RL) framework. RL algorithms are developed for the practical implementation of the RL Kelly strategy. Extensive simulation studies are conducted, and the results confirm the superior performance of the RL Kelly strategies.

Suggested Citation

  • R. Jiang & D. Saunders & C. Weng, 2022. "The reinforcement learning Kelly strategy," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1445-1464, August.
  • Handle: RePEc:taf:quantf:v:22:y:2022:i:8:p:1445-1464
    DOI: 10.1080/14697688.2022.2049356
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2022.2049356
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2022.2049356?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Min Dai & Yuchao Dong & Yanwei Jia & Xun Yu Zhou, 2023. "Learning Merton's Strategies in an Incomplete Market: Recursive Entropy Regularization and Biased Gaussian Exploration," Papers 2312.11797, arXiv.org.
    2. Min Dai & Yu Sun & Zuo Quan Xu & Xun Yu Zhou, 2024. "Learning to Optimally Stop Diffusion Processes, with Financial Applications," Papers 2408.09242, arXiv.org, revised Sep 2024.
    3. Yanwei Jia, 2024. "Continuous-time Risk-sensitive Reinforcement Learning via Quadratic Variation Penalty," Papers 2404.12598, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:22:y:2022:i:8:p:1445-1464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.