IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v33y2023i4p1166-1212.html
   My bibliography  Save this article

Learning equilibrium mean‐variance strategy

Author

Listed:
  • Min Dai
  • Yuchao Dong
  • Yanwei Jia

Abstract

We study a dynamic mean‐variance portfolio optimization problem under the reinforcement learning framework, where an entropy regularizer is introduced to induce exploration. Due to the time–inconsistency involved in a mean‐variance criterion, we aim to learn an equilibrium policy. Under an incomplete market setting, we obtain a semi‐analytical, exploratory, equilibrium mean‐variance policy that turns out to follow a Gaussian distribution. We then focus on a Gaussian mean return model and propose a reinforcement learning algorithm to find the equilibrium policy. Thanks to a thoroughly designed policy iteration procedure in our algorithm, we prove the convergence of our algorithm under mild conditions, despite that dynamic programming principle and the usual policy improvement theorem failing to hold for an equilibrium policy. Numerical experiments are given to demonstrate our algorithm. The design and implementation of our reinforcement learning algorithm apply to a general market setup.

Suggested Citation

  • Min Dai & Yuchao Dong & Yanwei Jia, 2023. "Learning equilibrium mean‐variance strategy," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1166-1212, October.
  • Handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1166-1212
    DOI: 10.1111/mafi.12402
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12402
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12402?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:33:y:2023:i:4:p:1166-1212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.