IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.06275.html
   My bibliography  Save this paper

Exploratory Randomization for Discrete-Time Linear Exponential Quadratic Gaussian (LEQG) Problem

Author

Listed:
  • Sebastien Lleo
  • Wolfgang Runggaldier

Abstract

We investigate exploratory randomization for an extended linear-exponential-quadratic-Gaussian (LEQG) control problem in discrete time. This extended control problem is related to the structure of risk-sensitive investment management applications. We introduce exploration through a randomization of the control. Next, we apply the duality between free energy and relative entropy to reduce the LEQG problem to an equivalent risk-neutral LQG control problem with an entropy regularization term, see, e.g. Dai Pra et al. (1996), for which we present a solution approach based on Dynamic Programming. Our approach, based on the energy-entropy duality may also be considered as leading to a justification for the use, in the literature, of an entropy regularization when applying a randomized control.

Suggested Citation

  • Sebastien Lleo & Wolfgang Runggaldier, 2025. "Exploratory Randomization for Discrete-Time Linear Exponential Quadratic Gaussian (LEQG) Problem," Papers 2501.06275, arXiv.org.
  • Handle: RePEc:arx:papers:2501.06275
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.06275
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    2. Davis, Mark & Lleo, Sébastien, 2020. "Debiased expert forecasts in continuous-time asset allocation," Journal of Banking & Finance, Elsevier, vol. 113(C).
    3. Lleo, Sébastien & Runggaldier, Wolfgang J., 2024. "On the separation of estimation and control in risk-sensitive investment problems under incomplete observation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 200-214.
    4. Ben Hambly & Renyuan Xu & Huining Yang, 2020. "Policy Gradient Methods for the Noisy Linear Quadratic Regulator over a Finite Horizon," Papers 2011.10300, arXiv.org, revised Jun 2021.
    5. Nicole Bäuerle & Ulrich Rieder, 2014. "More Risk-Sensitive Markov Decision Processes," Mathematics of Operations Research, INFORMS, vol. 39(1), pages 105-120, February.
    6. Marcin Pitera & Łukasz Stettner, 2023. "Discrete‐time risk sensitive portfolio optimization with proportional transaction costs," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1287-1313, October.
    7. Mark H.A. Davis & Sébastien Lleo, 2021. "Risk‐sensitive benchmarked asset management with expert forecasts," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1162-1189, October.
    8. Yanwei Jia & Xun Yu Zhou, 2022. "q-Learning in Continuous Time," Papers 2207.00713, arXiv.org, revised Apr 2023.
    9. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach," Papers 2108.06655, arXiv.org, revised Feb 2022.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jan Obłój & Thaleia Zariphopoulou, 2021. "In memoriam: Mark H. A. Davis and his contributions to mathematical finance," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1099-1110, October.
    2. S'ebastien Lleo & Wolfgang J. Runggaldier, 2023. "On the Separation of Estimation and Control in Risk-Sensitive Investment Problems under Incomplete Observation," Papers 2304.08910, arXiv.org, revised Nov 2023.
    3. Lleo, Sébastien & Runggaldier, Wolfgang J., 2024. "On the separation of estimation and control in risk-sensitive investment problems under incomplete observation," European Journal of Operational Research, Elsevier, vol. 316(1), pages 200-214.
    4. Huy Chau & Duy Nguyen & Thai Nguyen, 2024. "Continuous-time optimal investment with portfolio constraints: a reinforcement learning approach," Papers 2412.10692, arXiv.org.
    5. Mark H.A. Davis & Sébastien Lleo, 2021. "Risk‐sensitive benchmarked asset management with expert forecasts," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1162-1189, October.
    6. Kexin Chen & Hoi Ying Wong, 2022. "Duality in optimal consumption--investment problems with alternative data," Papers 2210.08422, arXiv.org, revised Jul 2023.
    7. Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
    8. Yanwei Jia, 2024. "Continuous-time Risk-sensitive Reinforcement Learning via Quadratic Variation Penalty," Papers 2404.12598, arXiv.org.
    9. Min Dai & Yu Sun & Zuo Quan Xu & Xun Yu Zhou, 2024. "Learning to Optimally Stop Diffusion Processes, with Financial Applications," Papers 2408.09242, arXiv.org, revised Sep 2024.
    10. Marcin Pitera & {L}ukasz Stettner, 2022. "Discrete-time risk sensitive portfolio optimization with proportional transaction costs," Papers 2201.02828, arXiv.org.
    11. Ben Hambly & Renyuan Xu & Huining Yang, 2023. "Recent advances in reinforcement learning in finance," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 437-503, July.
    12. Zhou Fang, 2023. "Continuous-Time Path-Dependent Exploratory Mean-Variance Portfolio Construction," Papers 2303.02298, arXiv.org.
    13. Chendi Ni & Yuying Li & Peter A. Forsyth, 2023. "Neural Network Approach to Portfolio Optimization with Leverage Constraints:a Case Study on High Inflation Investment," Papers 2304.05297, arXiv.org, revised May 2023.
    14. Aleksandr G. Alekseev & Mikhail V. Sokolov, 2016. "Benchmark-based evaluation of portfolio performance: a characterization," Annals of Finance, Springer, vol. 12(3), pages 409-440, December.
    15. Qingda Wei & Xian Chen, 2023. "Continuous-Time Markov Decision Processes Under the Risk-Sensitive First Passage Discounted Cost Criterion," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 309-333, April.
    16. Shankar, Ravi & Goel, Mayank, 2024. "Risk-sensitive benchmarked portfolio optimization under non-linear market dynamics," Applied Mathematics and Computation, Elsevier, vol. 481(C).
    17. O. L. V. Costa & F. Dufour, 2021. "Integro-differential optimality equations for the risk-sensitive control of piecewise deterministic Markov processes," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(2), pages 327-357, April.
    18. Min Dai & Yuchao Dong & Yanwei Jia, 2023. "Learning equilibrium mean‐variance strategy," Mathematical Finance, Wiley Blackwell, vol. 33(4), pages 1166-1212, October.
    19. Vladimir Cherny & Jan Obloj, 2013. "Optimal portfolios of a long-term investor with floor or drawdown constraints," Papers 1305.6831, arXiv.org.
    20. Benchimol, Jonathan & El-Shagi, Makram & Saadon, Yossi, 2022. "Do expert experience and characteristics affect inflation forecasts?," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 205-226.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.06275. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.