IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.12598.html
   My bibliography  Save this paper

Continuous-time Risk-sensitive Reinforcement Learning via Quadratic Variation Penalty

Author

Listed:
  • Yanwei Jia

Abstract

This paper studies continuous-time risk-sensitive reinforcement learning (RL) under the entropy-regularized, exploratory diffusion process formulation with the exponential-form objective. The risk-sensitive objective arises either as the agent's risk attitude or as a distributionally robust approach against the model uncertainty. Owing to the martingale perspective in Jia and Zhou (2023) the risk-sensitive RL problem is shown to be equivalent to ensuring the martingale property of a process involving both the value function and the q-function, augmented by an additional penalty term: the quadratic variation of the value process, capturing the variability of the value-to-go along the trajectory. This characterization allows for the straightforward adaptation of existing RL algorithms developed for non-risk-sensitive scenarios to incorporate risk sensitivity by adding the realized variance of the value process. Additionally, I highlight that the conventional policy gradient representation is inadequate for risk-sensitive problems due to the nonlinear nature of quadratic variation; however, q-learning offers a solution and extends to infinite horizon settings. Finally, I prove the convergence of the proposed algorithm for Merton's investment problem and quantify the impact of temperature parameter on the behavior of the learning procedure. I also conduct simulation experiments to demonstrate how risk-sensitive RL improves the finite-sample performance in the linear-quadratic control problem.

Suggested Citation

  • Yanwei Jia, 2024. "Continuous-time Risk-sensitive Reinforcement Learning via Quadratic Variation Penalty," Papers 2404.12598, arXiv.org.
  • Handle: RePEc:arx:papers:2404.12598
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.12598
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. LeRoy, Stephen F & Singell, Larry D, Jr, 1987. "Knight on Risk and Uncertainty," Journal of Political Economy, University of Chicago Press, vol. 95(2), pages 394-406, April.
    2. Lars Peter Hansen & Thomas J Sargent, 2014. "Robust Control and Model Uncertainty," World Scientific Book Chapters, in: UNCERTAINTY WITHIN ECONOMIC MODELS, chapter 5, pages 145-154, World Scientific Publishing Co. Pte. Ltd..
    3. Paul Glasserman & Xingbo Xu, 2013. "Robust Portfolio Control with Stochastic Factor Dynamics," Operations Research, INFORMS, vol. 61(4), pages 874-893, August.
    4. Pascal J. Maenhout, 2004. "Robust Portfolio Rules and Asset Pricing," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 951-983.
    5. Hansen, Lars Peter & Sargent, Thomas J., 2011. "Robustness and ambiguity in continuous time," Journal of Economic Theory, Elsevier, vol. 146(3), pages 1195-1223, May.
    6. Min Dai & Hanqing Jin & Steven Kou & Yuhong Xu, 2021. "A Dynamic Mean-Variance Analysis for Log Returns," Management Science, INFORMS, vol. 67(2), pages 1093-1108, February.
    7. V. S. Borkar, 2002. "Q-Learning for Risk-Sensitive Control," Mathematics of Operations Research, INFORMS, vol. 27(2), pages 294-311, May.
    8. R. Jiang & D. Saunders & C. Weng, 2022. "The reinforcement learning Kelly strategy," Quantitative Finance, Taylor & Francis Journals, vol. 22(8), pages 1445-1464, August.
    9. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    10. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    11. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    12. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    13. Mark Broadie & Deniz Cicek & Assaf Zeevi, 2011. "General Bounds and Finite-Time Improvement for the Kiefer-Wolfowitz Stochastic Approximation Algorithm," Operations Research, INFORMS, vol. 59(5), pages 1211-1224, October.
    14. Yanwei Jia & Xun Yu Zhou, 2022. "q-Learning in Continuous Time," Papers 2207.00713, arXiv.org, revised Apr 2023.
    15. Sigrún Andradóttir, 1995. "A Stochastic Approximation Algorithm with Varying Bounds," Operations Research, INFORMS, vol. 43(6), pages 1037-1048, December.
    16. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Gradient and Actor-Critic Learning in Continuous Time and Space: Theory and Algorithms," Papers 2111.11232, arXiv.org, revised Jul 2022.
    17. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    18. Yanwei Jia & Xun Yu Zhou, 2021. "Policy Evaluation and Temporal-Difference Learning in Continuous Time and Space: A Martingale Approach," Papers 2108.06655, arXiv.org, revised Feb 2022.
    19. Sun, Yeneng, 2006. "The exact law of large numbers via Fubini extension and characterization of insurable risks," Journal of Economic Theory, Elsevier, vol. 126(1), pages 31-69, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aït-Sahalia, Yacine & Matthys, Felix, 2019. "Robust consumption and portfolio policies when asset prices can jump," Journal of Economic Theory, Elsevier, vol. 179(C), pages 1-56.
    2. Min Dai & Yuchao Dong & Yanwei Jia & Xun Yu Zhou, 2023. "Learning Merton's Strategies in an Incomplete Market: Recursive Entropy Regularization and Biased Gaussian Exploration," Papers 2312.11797, arXiv.org.
    3. Shi, Zhan, 2019. "Time-varying ambiguity, credit spreads, and the levered equity premium," Journal of Financial Economics, Elsevier, vol. 134(3), pages 617-646.
    4. Massimo Guidolin & Francesca Rinaldi, 2013. "Ambiguity in asset pricing and portfolio choice: a review of the literature," Theory and Decision, Springer, vol. 74(2), pages 183-217, February.
    5. Zhang, Jinqing & Jin, Zeyu & An, Yunbi, 2017. "Dynamic portfolio optimization with ambiguity aversion," Journal of Banking & Finance, Elsevier, vol. 79(C), pages 95-109.
    6. Jang, Bong-Gyu & Lee, Seungkyu & Lim, Byung Hwa, 2016. "Robust consumption and portfolio rules with time-varying model confidence," Finance Research Letters, Elsevier, vol. 18(C), pages 342-352.
    7. Berend Roorda & J. M. Schumacher & Jacob Engwerda, 2005. "Coherent Acceptability Measures In Multiperiod Models," Mathematical Finance, Wiley Blackwell, vol. 15(4), pages 589-612, October.
    8. Roger J. A. Laeven & Mitja Stadje, 2014. "Robust Portfolio Choice and Indifference Valuation," Mathematics of Operations Research, INFORMS, vol. 39(4), pages 1109-1141, November.
    9. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    10. Dejian Tian & Weidong Tian, 2016. "Comparative statics under κ-ambiguity for log-Brownian asset prices," International Journal of Economic Theory, The International Society for Economic Theory, vol. 12(4), pages 361-378, December.
    11. Maenhout, Pascal J., 2006. "Robust portfolio rules and detection-error probabilities for a mean-reverting risk premium," Journal of Economic Theory, Elsevier, vol. 128(1), pages 136-163, May.
    12. Pascal J. Maenhout & Andrea Vedolin & Hao Xing, 2020. "Generalized Robustness and Dynamic Pessimism," NBER Working Papers 26970, National Bureau of Economic Research, Inc.
    13. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    14. Hui Chen & Nengjiu Ju & Jianjun Miao, 2014. "Dynamic Asset Allocation with Ambiguous Return Predictability," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 17(4), pages 799-823, October.
    15. Yacine Aït-Sahalia & Felix Matthys & Emilio Osambela & Ronnie Sircar, 2021. "When Uncertainty and Volatility Are Disconnected: Implications for Asset Pricing and Portfolio Performance," NBER Working Papers 29195, National Bureau of Economic Research, Inc.
    16. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    17. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    18. Szőke, Bálint, 2022. "Estimating robustness," Journal of Economic Theory, Elsevier, vol. 199(C).
    19. Wahid Faidi & Anis Matoussi & Mohamed Mnif, 2017. "Optimal Stochastic Control Problem Under Model Uncertainty With Nonentropy Penalty," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-41, May.
    20. Min Dai & Yu Sun & Zuo Quan Xu & Xun Yu Zhou, 2024. "Learning to Optimally Stop Diffusion Processes, with Financial Applications," Papers 2408.09242, arXiv.org, revised Sep 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.12598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.