IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v481y2024ics0096300324003874.html
   My bibliography  Save this article

Risk-sensitive benchmarked portfolio optimization under non-linear market dynamics

Author

Listed:
  • Shankar, Ravi
  • Goel, Mayank

Abstract

We discuss a continuous-time portfolio optimization problem to beat a stochastic benchmark. The model considers non-linear stochastic differential equations (SDEs) to model the dynamics of assets and economic factors. Unlike existing literature on risk-sensitive criteria, the proposed framework allows the model to capture the non-linearity in assets and factors dynamics. This article contributes to the two essential aspects of the problem; first, the existence and uniqueness of optimal investment strategy, which we prove using stochastic control theory and shows optimal strategies remain unchanged for the finite and infinite time horizon problems. Second, we use forecasting to compare investment performance under different economic factors. We analyze returns for the proposed model for three years in two important financial markets; S&P 100 and Dow 30. Risk versus return analysis indicates the importance of choosing relevant economic factors and their model for better portfolio performance. The results suggest an excellent bet to select the non-linear model over the linear one.

Suggested Citation

  • Shankar, Ravi & Goel, Mayank, 2024. "Risk-sensitive benchmarked portfolio optimization under non-linear market dynamics," Applied Mathematics and Computation, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324003874
    DOI: 10.1016/j.amc.2024.128926
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300324003874
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2024.128926?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. M. Goel & K. S. Kumar, 2009. "Risk-Sensitive Portfolio Optimization Problems with Fixed Income Securities," Journal of Optimization Theory and Applications, Springer, vol. 142(1), pages 67-84, July.
    3. Mark Davis & SEBastien Lleo, 2008. "Risk-sensitive benchmarked asset management," Quantitative Finance, Taylor & Francis Journals, vol. 8(4), pages 415-426.
    4. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark H.A. Davis & Sébastien Lleo, 2021. "Risk‐sensitive benchmarked asset management with expert forecasts," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1162-1189, October.
    2. Auffret, Philippe, 2001. "An alternative unifying measure of welfare gains from risk-sharing," Policy Research Working Paper Series 2676, The World Bank.
    3. Mayank Goel & Suresh Kumar K., 2006. "A Risk-Sensitive Portfolio Optimisation Problem with Stochastic Interest Rate," Journal of Emerging Market Finance, Institute for Financial Management and Research, vol. 5(3), pages 263-282, December.
    4. John H. Cochrane, 1999. "New facts in finance," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 23(Q III), pages 36-58.
    5. John Y. Campbell & Luis M. Viceira & Joshua S. White, 2003. "Foreign Currency for Long-Term Investors," Economic Journal, Royal Economic Society, vol. 113(486), pages 1-25, March.
    6. Orszag, J. Michael & Yang, Hong, 1995. "Portfolio choice with Knightian uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 19(5-7), pages 873-900.
    7. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    8. Penikas, Henry, 2010. "Copula-Models in Foreign Exchange Risk-Management of a Bank," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 17(1), pages 62-87.
    9. Gerrard, Russell & Kyriakou, Ioannis & Nielsen, Jens Perch & Vodička, Peter, 2023. "On optimal constrained investment strategies for long-term savers in stochastic environments and probability hedging," European Journal of Operational Research, Elsevier, vol. 307(2), pages 948-962.
    10. Munk, Claus & Sorensen, Carsten, 2004. "Optimal consumption and investment strategies with stochastic interest rates," Journal of Banking & Finance, Elsevier, vol. 28(8), pages 1987-2013, August.
    11. Paolo Guasoni & Gu Wang, 2020. "Consumption in incomplete markets," Finance and Stochastics, Springer, vol. 24(2), pages 383-422, April.
    12. Kraft, Holger & Steffensen, Mogens, 2008. "How to invest optimally in corporate bonds: A reduced-form approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(2), pages 348-385, February.
    13. Clemens, Christiane & Soretz, Susanne, 1999. "Konsequenzen des Zins- und Einkommensrisikos auf das wirtschaftliche Wachstum," Hannover Economic Papers (HEP) dp-221, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    14. Kihlstrom, Richard, 2009. "Risk aversion and the elasticity of substitution in general dynamic portfolio theory: Consistent planning by forward looking, expected utility maximizing investors," Journal of Mathematical Economics, Elsevier, vol. 45(9-10), pages 634-663, September.
    15. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    16. Christensen, Bent Jesper & Parra-Alvarez, Juan Carlos & Serrano, Rafael, 2021. "Optimal control of investment, premium and deductible for a non-life insurance company," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 384-405.
    17. Lin, Wen-chang & Lu, Jin-ray, 2012. "Risky asset allocation and consumption rule in the presence of background risk and insurance markets," Insurance: Mathematics and Economics, Elsevier, vol. 50(1), pages 150-158.
    18. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    19. Jieting Chen & Yuichiro Kawaguchi, 2018. "Multi-Factor Asset-Pricing Models under Markov Regime Switches: Evidence from the Chinese Stock Market," IJFS, MDPI, vol. 6(2), pages 1-19, May.
    20. Bretó, Carles & Veiga, Helena, 2011. "Forecasting volatility: does continuous time do better than discrete time?," DES - Working Papers. Statistics and Econometrics. WS ws112518, Universidad Carlos III de Madrid. Departamento de Estadística.

    More about this item

    Keywords

    Portfolio theory; Stochastic models; Optimal stochastic control; Prediction theory;
    All these keywords.

    JEL classification:

    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:481:y:2024:i:c:s0096300324003874. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.