IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.00745.html
   My bibliography  Save this paper

Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines

Author

Listed:
  • Xiyang Hu

Abstract

The increasing integration of Large Language Model (LLM) based search engines has transformed the landscape of information retrieval. However, these systems are vulnerable to adversarial attacks, especially ranking manipulation attacks, where attackers craft webpage content to manipulate the LLM's ranking and promote specific content, gaining an unfair advantage over competitors. In this paper, we study the dynamics of ranking manipulation attacks. We frame this problem as an Infinitely Repeated Prisoners' Dilemma, where multiple players strategically decide whether to cooperate or attack. We analyze the conditions under which cooperation can be sustained, identifying key factors such as attack costs, discount rates, attack success rates, and trigger strategies that influence player behavior. We identify tipping points in the system dynamics, demonstrating that cooperation is more likely to be sustained when players are forward-looking. However, from a defense perspective, we find that simply reducing attack success probabilities can, paradoxically, incentivize attacks under certain conditions. Furthermore, defensive measures to cap the upper bound of attack success rates may prove futile in some scenarios. These insights highlight the complexity of securing LLM-based systems. Our work provides a theoretical foundation and practical insights for understanding and mitigating their vulnerabilities, while emphasizing the importance of adaptive security strategies and thoughtful ecosystem design.

Suggested Citation

  • Xiyang Hu, 2025. "Dynamics of Adversarial Attacks on Large Language Model-Based Search Engines," Papers 2501.00745, arXiv.org.
  • Handle: RePEc:arx:papers:2501.00745
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.00745
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tinglong Dai & Shubhranshu Singh, 2020. "Conspicuous by Its Absence: Diagnostic Expert Testing Under Uncertainty," Marketing Science, INFORMS, vol. 39(3), pages 540-563, May.
    2. Abreu, Dilip, 1988. "On the Theory of Infinitely Repeated Games with Discounting," Econometrica, Econometric Society, vol. 56(2), pages 383-396, March.
    3. Emilio Calvano & Giacomo Calzolari & Vincenzo Denicolò & Sergio Pastorello, 2020. "Artificial Intelligence, Algorithmic Pricing, and Collusion," American Economic Review, American Economic Association, vol. 110(10), pages 3267-3297, October.
    4. Jeanine Miklós-Thal & Catherine Tucker, 2019. "Collusion by Algorithm: Does Better Demand Prediction Facilitate Coordination Between Sellers?," Management Science, INFORMS, vol. 65(4), pages 1552-1561, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stefano Colombo & Aldo Pignataro, 2022. "Information accuracy and collusion," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(3), pages 638-656, August.
    2. Colombo, Stefano & Filippini, Luigi & Pignataro, Aldo, 2024. "Information sharing, personalized pricing, and collusion," Information Economics and Policy, Elsevier, vol. 66(C).
    3. Florian Peiseler & Alexander Rasch & Shiva Shekhar, 2022. "Imperfect information, algorithmic price discrimination, and collusion," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(2), pages 516-549, April.
    4. Ganesh Iyer & T. Tony Ke, 2024. "Competitive Model Selection in Algorithmic Targeting," Marketing Science, INFORMS, vol. 43(6), pages 1226-1241, November.
    5. Bingyan Han, 2021. "Understanding algorithmic collusion with experience replay," Papers 2102.09139, arXiv.org, revised Mar 2021.
    6. Marcel Wieting & Geza Sapi, 2021. "Algorithms in the Marketplace: An Empirical Analysis of Automated Pricing in E-Commerce," Working Papers 21-06, NET Institute.
    7. Yiquan Gu & Leonardo Madio & Carlo Reggiani, 2019. "Exclusive Data, Price Manipulation and Market Leadership," CESifo Working Paper Series 7853, CESifo.
    8. Martin, Simon & Rasch, Alexander, 2022. "Collusion by algorithm: The role of unobserved actions," DICE Discussion Papers 382, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    9. Soumen Banerjee, 2023. "Combating Algorithmic Collusion: A Mechanism Design Approach," Papers 2303.02576, arXiv.org, revised Jul 2023.
    10. Martin, Simon & Rasch, Alexander, 2024. "Demand forecasting, signal precision, and collusion with hidden actions," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    11. Gonzalo Ballestero, 2021. "Collusion and Artificial Intelligence: A computational experiment with sequential pricing algorithms under stochastic costs," Young Researchers Working Papers 1, Universidad de San Andres, Departamento de Economia, revised Oct 2022.
    12. Hanspach, Philip & Sapi, Geza & Wieting, Marcel, 2024. "Algorithms in the marketplace: An empirical analysis of automated pricing in e-commerce," Information Economics and Policy, Elsevier, vol. 69(C).
    13. Justin P. Johnson & Andrew Rhodes & Matthijs Wildenbeest, 2023. "Platform Design When Sellers Use Pricing Algorithms," Econometrica, Econometric Society, vol. 91(5), pages 1841-1879, September.
    14. Epivent, Andréa & Lambin, Xavier, 2024. "On algorithmic collusion and reward–punishment schemes," Economics Letters, Elsevier, vol. 237(C).
    15. John Asker & Chaim Fershtman & Ariel Pakes, 2024. "The impact of artificial intelligence design on pricing," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 33(2), pages 276-304, March.
    16. Michele Bisceglia & Jorge Padilla, 2023. "On sellers' cooperation in hybrid marketplaces," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 32(1), pages 207-222, January.
    17. Igor Sadoune & Marcelin Joanis & Andrea Lodi, 2024. "Algorithmic Collusion And The Minimum Price Markov Game," Papers 2407.03521, arXiv.org, revised Nov 2024.
    18. Fourberg, Niklas & Marques-Magalhaes, Katrin & Wiewiorra, Lukas, 2022. "They are among us: Pricing behavior of algorithms in the field," WIK Working Papers 6, WIK Wissenschaftliches Institut für Infrastruktur und Kommunikationsdienste GmbH, Bad Honnef.
    19. Normann, Hans-Theo & Sternberg, Martin, 2023. "Human-algorithm interaction: Algorithmic pricing in hybrid laboratory markets," European Economic Review, Elsevier, vol. 152(C).
    20. Abada, Ibrahim & Lambin, Xavier & Tchakarov, Nikolay, 2024. "Collusion by mistake: Does algorithmic sophistication drive supra-competitive profits?," European Journal of Operational Research, Elsevier, vol. 318(3), pages 927-953.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.00745. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.